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Abstract  

In this paper, the probabilistic free vibration analysis of a geometrically coupled cantilever wing with uncertain material 
properties is carried out using stochastic finite element (SFEM) based on first order perturbation technique. Here, both 
stiffness and damping of the system are considered as random parameters. The bending and torsional rigidities are 
assumed as spatially varying second order Gaussian random fields and represented by Karhunen Loeve (K-L) 
expansion. Here, the expected value, standard deviation, and probability distribution of random natural frequencies and 
damping ratios are computed. The results obtained from the present approach are also compared with Monte Carlo 
simulations (MCS). The results show that the uncertain bending rigidity has more influence on the damping ratio and 
frequency of modes 1 and 3 while uncertain torsional rigidity has more influence on the damping ratio and frequency of 
modes 2 and 3. 
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2. Mathematical model 

                        

 

 
 
Fig. 1 The schematic representation of geometric 

coupled cantilever beam 

2.1. Finite element discretization  

 

2.2. Random field discretization  
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2.3. Perturbation approach 

                      

                              

 

              

    

           

                             

3. Results and discussion 

Table 1 Mean natural frequencies of cantilever beam 
Mode 

Number 
Present FEM 

solution (rad/s) 
Analytical results2 

(rad/s) 
  49.62 49.6 
  97.13 97.0 
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Table 2 Mean properties of cantilever wing 

Parameters Description Values 

 Span-wise bending stiffness  Nm2 
 Span-wise torsion stiffness  Nm2 
 Mass per unit length  kg/m 
 Dimensionless static balance  
 Elastic axis location parameter  
 Semi-reference chord  m 
 Span  m 
 Mass moment of inertia per unit length  kg-m 

,  Damping coefficients ,  

Table 3 Comparison of Mean and SD of frequencies and damping ratios of geometric coupled wing using various 

approaches for C.O.V of  EI = 0.05 
No of 

K-L 

terms 

Mode 

Nos 
Perturbation MCS 

      

N=2 Mode 1 (46.6810, 0.0200) 0.9320 2.7592e-04 (46.6779, 0.0200) 0.9255 2.7489e-04 
Mode 2 (141.3769, 0.0149) 0.4551 1.2288e-05 (141.3794,0.0149) 0.4518 1.2199e-05 
Mode 3 (253.2289, 0.0199) 2.4215 1.3135e-04 (253.1812,0.0199) 2.4065 1.3048e-04 

 N=4 Mode 1 (46.6810, 0.0200) 0.9400 2.7829e-04 (46.6747,0.0200) 0.9340 2.7749e-04 
Mode 2 (141.3769, 0.0149) 0.4570 1.2339e-05 (141.3779,0.0149) 0.4540 1.2260e-05 
Mode 3 (253.2289, 0.0199) 2.4218 1.3136e-04 (253.1766,0.0199) 2.4070 1.3051e-04 

 

Table 4 Comparison of Mean and SD of frequencies and damping ratios of geometric coupled wing using various 

approaches for C.O.V of GJ = 0.05 
No of 

K-L 

terms 

Mode 

Nos 
Perturbation MCS 

      

N=2 Mode 1 (46.6810,  0.0200) 0.1280 3.7892e-05 (46.6768, 0.0200) 0.1276 3.7801e-05 
Mode 2 (141.3769, 0.0149) 2.7362 7.3871e-05 (141.3800, 0.0149) 2.7155 7.3242e-05 
Mode 3 (253.2289, 0.0199) 2.2825 1.2381e-04 (253.1896, 0.0199) 2.2672 1.2294e-04 

N=4 Mode 1 (46.6810, 0.0200) 0.1281 3.7931e-05 (46.6764, 0.0200) 0.1278 3.7868e-05 
Mode 2 (141.3769, 0.0149) 2.7444 7.4094e-05 (141.3697, 0.0149) 2.7259 7.3512e-05 
Mode 3 (253.2289, 0.0199) 2.2871 1.2406e-04 (253.1827, 0.0199) 2.2737 1.2329e-04 
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Fig. 2 The C.O.V of damping ratio and frequency of Mode 1, Mode 2 and Mode 3 vs C.O.V of EI 
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Fig. 3 The C.O.V of damping ratio and frequency of Mode 1, Mode 2 and Mode 3 vs C.O.V of GJ 
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Fig. 4 The probability density function of  damping ratio and frequency of Mode 1, Mode 2 and Mode 3 for 

C.O.V of EI = 5 % 
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Fig. 5 The probability density function of  damping ratio and frequency of Mode 1, Mode 2 and Mode 3 for 

C.O.V of GJ = 5 % 
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4. Conclusions 
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