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Abstract

In this paper, the probabilistic free vibration analysis of a geometrically coupled cantilever wing with uncertain material
properties is carried out using stochastic finite element (SFEM) based on first order perturbation technique. Here, both
stiffness and damping of the system are considered as random parameters. The bending and torsional rigidities are
assumed as spatially varying second order Gaussian random fields and represented by Karhunen Loeve (K-L)
expansion. Here, the expected value, standard deviation, and probability distribution of random natural frequencies and
damping ratios are computed. The results obtained from the present approach are also compared with Monte Carlo
simulations (MCS). The results show that the uncertain bending rigidity has more influence on the damping ratio and
frequency of modes 1 and 3 while uncertain torsional rigidity has more influence on the damping ratio and frequency of

modes 2 and 3.
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1. Introduction

The free vibration analysis is important for any

dynamical system such as bridges, turbines,

compressors, aircraft structures etc. In these
structures, there is some difference in location of
elastic axis (shear center) and centroid of the cross-
section. Due to this difference or non—coincidence of
shear center and centroid of the cross—section a
coupling in the dynamical system arises known as
geometrical coupling. The geometrical coupling
occurs in both civil and aircraft structures, which is
known as bending—torsion inertia coupling. Friberg
[1] considered geometrically coupled beam, and
used Euler-Bernoulli-Saint Venant theory to develop
a numerical procedure to solve coupled beam

problem for eigen modes and eigen frequencies.
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Banarjee [2] and Banarjee et al. [3] developed an
exact explicit expression which gives the natural
frequencies and mode shapes of bending torsion
coupled beam, and equivalent beam formulation of
composite beams respectively. Hasheni and Richard
[4] presented a dynamic finite element formulation
for free vibration analysis of axially loaded bending—
torsion coupled beam, which uses the exact solution
based on Euler-Bernoulli and St. Venant beam
theories for finding the exact solution of axially
loaded uniform beam. The solution is treated as the
basis of dynamic finite element formulation. The
flutter analysis of wing like structures was carried
out by many researchers [5-7]. Cheng and Xiao [8,
9] carried out the probabilistic free vibration
analysis of civil structures, axially loaded beams, and
suspension bridges having both structural as well as
geometric uncertainty modeled as random variables
using response surface method. The coefficients of
response surface polynomial were determined using
design of experiment technique. Recently, Sepahvand
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and Marburg [10] considered probabilistic dynamic
analysis of cantilever beam (without geometrical
coupling) with spatial random variation in bending
rigidity. The proportional damping was considered as
random fields, and for solution purpose generalized
polynomial chaos conjunction with nonintrusive
technique was used. From the literature, it is noted
that much attention has been given by researchers
on deterministic free vibration analysis of geometric
coupled beam with various types of application
study of

irrespective  of discipline but the

probabilistic  free vibration characteristics of
geometrically coupled beam is not stressed.

In the present work, the probabilistic free vibration
of a geometric coupled wing with uncertain bending
and torsional rigidities is studied. Here, both bending
and torsional rigidities are modelled as second order
Gaussian random fields with isotropic exponential
covariance function. The proportional damping is
also considered as random field in order to get more
realistic eigenvalue solution. The first order
perturbation technique is used for the probabilistic
free vibration analysis of the wing, and the obtained
response is validated through Monte

simulations (MCS).

Carlo

2. Mathematical model

The schematic representation of geometric coupled
cantilever wing [5] modelled as 1-D beam is shown
in Fig. 1. Here, 0 is the origin of the axis system. C
and P are the locations of center of mass and shear
center respectively. The dimensionless parameters
a and e (-1<a<1land—1<e<1) determine the
location of elastic and inertia axes respectively. The
governing equations of motion of beam with random
stiffness parameters can be expressed as:

2 2
mW—mxaba+a‘1—y(El‘;T”y”) =0 (1)
.. . a da\ _
L& — mx,bw — > (G] E) = (2)

Here, w(y,t) and a(y,t) denote the out—of-plane
deflection and rotation of beam about elastic axis
respectively. m denotes mass per unit span and I, =
I, + m(x,b)? is mass moment of inertia per unit span
about elastic axis, where I, is the mass moment of
inertia per unit span about inertia axis, x, = (e —a)
is the dimensionless static unbalance, and b is the
semi-reference chord of the wing. The dot over any

quantity represents the time derivative.

Fig. 1 The schematic representation of geometric

coupled cantilever beam

The beam bending rigidity (EI) and torsional rigidity
(G.)) are assumed as random parameters and modeled

as Gaussian random fields.

2.1. Finite element discretization

The governing equations of motion of wing given in
Egs. 1 and 2 can be expressed in finite element form
using weak formulation and choosing suitable
interpolation functions for displacement fields. The
can be

discrete form of equation of motion

expressed as:
M{G} + D{q} + K{q} = {0} (3)

where M, D, and K (=K, + K;) are the global mass,
damping, and stiffness matrices respectively, and {q}
and {0} denote the nodal displacement and null
vectors respectively. K, and K; are global bending
and torsional stiffness matrices respectively. Here,
the distributed structural damping in the system is
modeled using mass-stiffness proportional Rayleigh
damping. The damping matrix 0D is formed by linear
combination of the mass and stiffness matrices as
D=pBM+yK, where f and y are the mass and
stiffness proportional damping constants.

2.2. Random field discretization
method

discretize the stochastic space for the treatment of

In this paper, a spectral i1s used to
randomness in physical quantities. In this method,

random quantities are represented by spectral
decomposition in terms of unknown coefficients and
orthogonal basis functions. E7 and GJ are treated as
independent Gaussian random fields defined on the

probability space (@) over the physical domain L.
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The random field is represented by mean and its
covariance function [11], and discretized in a mean
square convergent series known as A-L expansion
[12] as:

EI(y,0) = EI + £5.1 2,6,(0) £, () 4)
GJ(,0) = GJ + X521 20 &n(0) f,() (5)

Here, EI and GJ are the mean of random fields, and
A, and f,,(y) are the eigenvalues and eigen functions
of the covariance kernel [12]. &,(6) represents the
zero mean and unit variance independent Gaussian
random variables. The discrete form of Eq. 3 can be
written with N truncated A-L expansion terms as:

M{G} + [BM + v (K + XN_1 & (0K, +
g:l S;n(‘g)Kt,n)]{q} + [I? + Zrl\llzl fn(e)Kb,n +
Ne1 En (@)K, p]{q} = {0} (6)

the global
containing bending and torsional stiffness terms, and
Z‘r[\{:lfn(e)Kb,n and Zg=1’>{n(9)Kt,n are
bending and torsional stiffness matrices respectively.

Let {q(®)} = {glexp(at) ,
eigenvalue and eigenvector respectively, 1 = —{w +

where K is mean stiffness matrix

stochastic
where 2 and {q} are

iw, where { and w are damping ratio and damped
natural frequency respectively. Upon substituting {q}
in Eq. 6, we get the eigenvalue problem as:

[2M + (M +y (R + SNy (00K +
g:l gn(e)Kt,n)] + [R + Zgzl fn(g)Kb,n +
N1 6 (0K ]| @) = (0} (7)

The above equation is solved using perturbation
technique in the next subsection.

2.3. Perturbation approach

In the perturbation technique, eigenvalue and

eigenvector are expanded via Taylor series
expansion about the mean values of random
variables obtained from A-L expansion as:
A=+ 3V 2 e _0&n(0) (8)
0 n=1 a8, Ep=05n
(@} = o} + 201 22| _o£a(6) ©)
q qo n=1 3¢, &p=05n

Here, A, and {g,} are the mean values of A and {g}
respectively. Upon substitution of Egs. 8 and 9 into
Eq. 7, and separating zeroth order and first order
terms, the following equations are obtained.

Zeroth order:

[A2M + 2,(BM + yK) + K1{g,} = {0} (10)

First order:

— —_ 9{g
[A5M + Ao(BM + yK) + K] % + [AO (y(Kb,n +

Ken)) + (Ko + Ken) | @0} + 571206 +

BM +yK)1{go} = {0} (11
The mean eigenvalues are evaluated from zeroth
order equation. To find the derivative of eigenvalue,

T
multiply mean adjoint eigenvector transpose {qnadj}
or left eigenvector transpose [13-15] in Eq. 11. We
get the eigenvalue derivative with respect to random
variables as:

T
aa {%adj} [20(¥(Kon+Ken))+(Kpn+Ken)| (@0}

= (12)
Oén (Goga,) [220M+(BM+YR)(do}

The eigenvalue (1) consists of real and imaginary
parts. The real part consists of damping ratio and
frequency, and imaginary part consists of frequency
of the damped system. The variance of damping ratio
can be expressed as:

2 _ 1 N [ORe(D) arm)\2
0f = e (TG + 60 5 ) (13)

and variance of frequency as:

2
o2 =3N_, ("”%ff)) (14)

where {, and w, are the mean damping ratio and

frequency respectively.
3. Results and discussion

The mean properties of cantilever beam [2] used
for the analysis are E/= 9.75 x 10 Nm?, GJ = 9.88x
10° Nm?, m = 35.75 kg/m, L, = 8.65 kg-m, x, = 0.36,
a=0, b=0.5mand 2= 6 m. First, the validation of
mean natural frequencies of cantilever beam is
performed. Table 1 shows the comparison of the first
two mean frequencies obtained from the present
approach with those given by Banerjee [2] which
match well with each other.

Table 1 Mean natural frequencies of cantilever beam

Mode Present FEM Analytical results?
Number solution (rad/s) (rad/s)
o 49.62 49.6
w5 97.13 97.0

Next, the probabilistic free vibration analysis of
geometric coupled beam is carried out using first
order perturbation technique. The mean properties of
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Table 2 Mean properties of cantilever wing

Parameters Description Values
EI Span-wise bending stiffness 9.77 x 10° Nm?
GJ Span-wise torsion stiffness 0.988 x 10° Nm?
m Mass per unit length 35.719 kg/m
X Dimensionless static balance 0.33
a Elastic axis location parameter - 0.2
b Semi-reference chord 0.9144 m
L Span 6.09 m
I, Mass moment of inertia per unit length 6.5704 kg-m

B,y Damping coefficients 1.58,1.33 x 10™*

Table 3 Comparison of Mean and SD of frequencies and damping ratios of geometric coupled wing using various
approaches for C.0.V of EI=0.05

No of | Mode Perturbation MCS

K-L Nos

terms (o, %0) Ow 74 (wo, %) Ow 0¢

N=2 | Mode 1 | (46.6810, 0.0200) 0.9320 | 2.7592¢-04 | (46.6779, 0.0200) | 0.9255 2.7489¢-04
Mode 2 | (141.3769, 0.0149) | 0.4551 | 1.2288e-05 | (141.3794,0.0149) | 0.4518 1.2199¢-05
Mode 3 | (253.2289,0.0199) | 2.4215 | 1.3135e-04 | (253.1812,0.0199) | 2.4065 1.3048e-04

N=4 | Mode 1 | (46.6810, 0.0200) 0.9400 | 2.7829¢-04 | (46.6747,0.0200) | 0.9340 | 2.7749¢-04
Mode 2 | (141.3769, 0.0149) | 0.4570 | 1.2339e-05 | (141.3779,0.0149) | 0.4540 1.2260e-05
Mode 3 | (253.2289,0.0199) | 2.4218 | 1.3136e-04 | (253.1766,0.0199) | 2.4070 1.3051e-04

Table 4 Comparison of Mean and SD of frequencies and damping ratios of geometric coupled wing using various
approaches for C.0.V of GJ=0.05

No of | Mode Perturbation MCS
K-L Nos

terms (w0, Go) o o; (w0, %) Ow o¢

N=2 | Mode 1 | (46.6810, 0.0200) | 0.1280 | 3.7892¢-05 | (46.6768, 0.0200) 0.1276 | 3.7801e-05
Mode 2 | (141.3769, 0.0149) | 2.7362 | 7.3871e-05 | (141.3800, 0.0149) | 2.7155 | 7.3242¢-05
Mode 3 | (253.2289, 0.0199) | 2.2825 | 1.2381e-04 | (253.1896,0.0199) | 2.2672 | 1.2294¢-04

N=4 Mode 1 | (46.6810, 0.0200) 0.1281 | 3.7931e-05 | (46.6764, 0.0200) 0.1278 | 3.7868e-05
Mode 2 | (141.3769, 0.0149) | 2.7444 | 7.4094e-05 | (141.3697,0.0149) | 2.7259 | 7.3512¢-05
Mode 3 | (253.2289,0.0199) | 2.2871 | 1.2406e-04 | (253.1827,0.0199) | 2.2737 | 1.2329¢-04

cantilever wing [7] used in the present analysis are
in Table 2. For the

exponential covariance function is assumed as

given present problem
C(y,y1) = o2e~=l where 62 is the variance of the
field and c is the reciprocal of the correlation length.
The correlation length considered here is span
length (L), and for the probabilistic model validation
coefficient of wvariation (C.0.V) in bending and

torsional rigidities are taken as 0.05. The expected

value and standard deviation (SD) of the first three
natural frequencies and damping ratios of the
geometric coupled beam obtained from perturbation
approach and MCS (with 5000 Samples) are shown in
Tables 3 and 4. The effect of number of terms in the
K-L expansion (N = 2 and 4) on the SD of natural
frequencies and damping ratios are also shown in
Tables 3 and 4. From Table 3, it is observed that the
mean and SD of damping ratio and frequency of
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Fig. 2 The C.0.V of damping ratio and frequency of Mode 1, Mode 2 and Mode 3 vs C.O.V of EI

various modes obtained using perturbation approach
agree well with MCS. The convergence of the SD of
natural frequencies and damping ratios are also
shown for increasing terms in the A-L expansion,
and found to be converging well with four terms of
K-L expansion. It is also observed that the mean and
SD of the second mode damping ratio is slightly
lower compared to other modes in the case C.0.V of
EI The SD of frequency of mode 2 is less than other
two modes, so C.O.V of E7 has very less effect on

mode 2 frequency as well. From Table 4, in the case
of uncertain torsional rigidity, it is also observed that
mean and SD of damping ratio and frequency of
various modes obtained from perturbation approach
agree well with MCS, which validates perturbation
approach.

Due to uncertainty in GJ, the SD of damping ratio
increases with increasing mode number (.e.
increasing frequency), and mode 2 frequency has

maximum SD, which shows that uncertainty in the



frequency. The convergence study is also carried out
by considering two and four terms of A—-L expansion.
From the table, it the SD of
damping ratios and frequencies are converging with

is observed that,

four terms of A-L expansion. The number of A-L
expansion terms i.e. N = 4 is fixed for further studies

on the basis of convergence studies presented above.

The C.0.V of damping ratio and frequency of various
modes for the variation in bending rigidity (EI) is
shown in Fig. 2. From the figure, it is observed that

6 Sandeep Kumar - Amit Kumar Onkar - Manjuprasad M.
x10° x10°
4 6
35 1
% |
b A
S s : z
5 =
~ g4 1
w25 g =
g &
;En 2 1 gs 1
=t S
£1s 1 &
g g, |
5 =
S
= ! ] S
< Uy ]
© s
o —+— Perturhation 4 —+— Perturhation
I(]].l]l 002 003 004 005 006 007 008 009 01 011 I[]].l]l 002 003 004 005 006 007 008 009 01 011
C.O.Vof GJ C.OVof GJ
0.01 0.04
« 0.009 4 0.035 i
L] o
S 0.008 g ot
s T 003 1
= 0.007 1 =
c 3 pos .
En.uuﬁ E E ’
2
£ 0.005 1 E’ 0.02 1
z £
g 0004 1 & 0015 1
3 oy
= 0.003 1 S
° g 001 g
o' 0.002 4 o
3] 0.005
0.001% —+— Perturbation k. —+— Perturbation
[lulll 002 003 004 005 006 007 0.08 0.09 01 011 l?.lll 002 003 004 005 006 007 008 009 01 011
C.OVof GJ C.OVof GJ
0.014 0.02
0.018 4
: 0.012 9
¢l
g § 0.016 4
% oo 1 = 0014 1
c =
= o008 1 0002 ]
2
E‘ Z o .
g
4 =
E‘ el & 0.008 1
kL <
< 0.004 ] 2 oaos i
g 8 0.004 | g
U 0.002 .
‘ "
& MCS (5000 Samples)
I(]].l]l 002 003 004 005 006 007 008 009 01 011 l[]].l]l 002 003 004 005 006 007 008 009 01 011
C.O.Vof GJ C.O.Vof GJ
Fig. 3 The C.0.V of damping ratio and frequency of Mode 1, Mode 2 and Mode 3 vs C.0.V of GJ
torsional rigidity has more effect on mode 2 the C.0.V of damping ratio and frequency of all three

modes obtained from both perturbation approach and
MCS match well except for mode 1 where the C.O.V
of damping ratio obtained from perturbation approach
starts deviating from MCS results at C.0.V of E/ =
7%. The C.0.V of damping ratio and frequency of
various modes for the variation in torsional rigidity
(G
observed that the C.0.V of damping ratio of first two

is shown in Fig. 3. From the figure, it is

modes (mode 1 and mode 2) and frequency of mode
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Fig. 4 The probability density function of damping ratio and frequency of Mode 1, Mode 2 and Mode 3 for
C.OVofEI=5%

1 obtained from the perturbation approach and MCS
for variation in the torsional rigidity match up to
C.0.V of GJ=T7%.

For the C.0.V of £/ = 0.05, the probability density
functions (pdfs) of damping ratio and frequency for
various modes obtained from MCS and perturbation
approaches are shown in Fig. 4. From the figure, it is

observed that the nature of pdf for damping ratio and
frequency of various modes of geometric coupled
wing obtained from MCS and perturbation approach
possess Gaussian characteristics. From the figure, it
is also observed that for mode 2, the pdfs of damping
ratio and frequency show narrow band compare to
other two modes, which indicates that the
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uncertainty in bending rigidity has less effect on
mode 2.

Next, we consider the case of C.0.V of G/ = 0.05,
the pdfs of damping ratio and frequency of various
modes are shown in Fig. 5. From the Fig. 5, it is
observed that the pdfs

of damping ratio and

frequency of various modes obtained from MCS and
perturbation approach are essentially Gaussian. The
pdf of frequency of mode 2 shows wide band, which
shows that the variation in (J/ has more effect on
frequency of mode 2 in comparison of other modes
under consideration.
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4. Conclusions

In this paper, a probabilistic free vibration problem
has been studied using first order perturbation
technique. For this purpose, a geometrically coupled
cantilever wing has been considered with bending
and torsional rigidities as second order Gaussian
random fields. The damping has been modeled by
proportional damping which depends on bending as
well as torsional rigidities. By virtue of randomness
in bending and torsional rigidity, damping also
becomes a random parameter. The probabilistic free
vibration response is obtained in the form of mean
and SD, and pdf of damping ratio and frequency of
various modes. The mean and SD of damping ratios
and frequencies for the C.0.V of £/ and GJ obtained
from the perturbation approach match well with
corresponding MCS results. In the case of variation
in £, the C.O.V of the damping ratio of mode 1
obtained from perturbation approach agrees well
with MCS up to C.O0.V of £/ = 7%. Similarly, in the
case of variation in ./, damping ratio and frequency
of mode 1, and damping ratio of mode 2 agree well
with MCS up to C.O.V of GJ = 7%. The pdfs of
damping ratio and frequency of various modes
obtained from perturbation approach and MCS have
Gaussian characteristics for the C.0.V of £/ and GJ=
0.05. In the case of C.0.V of £/ the pdf of damping
ratio and frequency of mode 2 show narrow band
while in the case of C.O.V of G/, the pdf of frequency
has wide band. This indicates that the effect of
uncertainty in bending rigidity on frequency of mode
2 1s much less than torsional rigidity.
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