• Title/Summary/Keyword: coupled beam

Search Result 659, Processing Time 0.029 seconds

A Study on a Foxtail Electrostatic Microactuator with a High Resolution (고해상도의 Foxtail형 정전력 마이크로구동기에 대한 연구)

  • Kim Man-Geun;Kim Young-Yun;Jo Kyoung-Woo;Lee Jong-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1198-1201
    • /
    • 2005
  • A new foxtail actuator driven by V-shape beam deflection using electrostatic force has been designed, fabricated and characterized for nano-resolution manipulators. The proposed foxtail mechanism was implemented using a pair of electrostatic actuators and a pair of holding actuators, which was analyzed based on the electromechanically coupled motion of voltage - displacement relation. The proposed actuator was fabricated onto Silicon-on-Insulator (SOI) wafer and its stepping characteristics were measured by micro optical interferometer consisting of integrated micromirror and optical fiber. The fabricated foxtail microactuator was successfully operated from 1nm to 76nm, and the magnitude of step displacement was controllable up from 26nm/cycles to 53nm/cycle by changing the voltage.

  • PDF

Digital Holographic microscopy based on phase shifting technique (위상천이가법에 의한 디지털 홀로그래피 마이크로스코피에 관한 연구)

  • Park, Kwang-Hee;Chai, Pyung-Seak;Eun, Jae-Jeang
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.181-187
    • /
    • 2011
  • In this thesis, digital in-line holographic microscopy has been implemented with enhanced phase shifting technique. It was demonstrated that the zero-order diffraction noise and the twin image can be eliminated by phase-shifting interferometry very effectively. Also the experimental and numerical reconstruction has been incorporated into one set-up operating in real time. Experimental results and the analysis of the phase map indicate that the proposed system can be very useful for the measurement of microscopic objects and 3-D microscopy.

FGM micro-gripper under electrostatic and intermolecular Van-der Waals forces using modified couple stress theory

  • Jahangiri, Reza;Jahangiri, Hadi;Khezerloo, Hamed
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1541-1555
    • /
    • 2015
  • In this paper mechanical behavior of the functional gradient materials (FGM) micro-gripper under thermal load and DC voltage is numerically investigated taking into account the effect of intermolecular forces. In contrary to the similar previous works, which have been conducted for homogenous material, here, the FGM material has been implemented. It is assumed that the FGM micro-gripper is made of metal and ceramic and that material properties are changed continuously along the beam thickness according to a given function. The nonlinear governing equations of the static and dynamic deflection of microbeams have been derived using the coupled stress theory. The equations have been solved using the Galerkin based step-by-step linearization method (SSLM). The solution procedure has been evaluated against available data of literature showing good agreement. A parametric study has been conducted, focusing on the combined effects of important parameters included DC voltage, temperature variation, geometrical dimensions and ceramic volume concentration on the dynamic response and stability of the FGM micro-gripper.

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Belver, Ali Vasallo;Iban, Antolin Lorenzana;Rossi, Riccardo
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.189-208
    • /
    • 2012
  • Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.

Evaluation on Structural Performance of Two-nodal Rotary Frictional Component (2절점 회전형 마찰요소의 구조성능 평가)

  • Kim, Do-Hyun;Kim, Ji-Young;Kim, Myeong-Han
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.51-57
    • /
    • 2015
  • Various hybrid dampers have been developed in Korea to control the vibration due to a wind and earthquake. In order to minimize the installment space, cost and construction process, the new hybrid friction damper is developed. This hybrid damper is composed of several rotary friction components having two frictional joint. Because of these components, the building vibration due to wind and earthquake can be mitigated by hybrid friction damper. In this paper, various dependency tests were carried out to evaluate on the structural performance of two joint rotational friction component of the hybrid damper. Test results show that two joint rotational components do not depend on a displacement and a frequency of forcing but friction coefficients is reducing as a clamping force is increasing.

RRT Study for the Quantitative Analysis of Boron in Silicon (실리콘에 도핑된 붕소의 정량분석에 대한 공동분석연구)

  • 김경중;김현경;문대원;홍태은;정칠성;김이경;김재남;임철호;김정호
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.4
    • /
    • pp.218-224
    • /
    • 2002
  • A domestic round robin test(RRT) for the quantitative analysis of minor impurities was performed by a standard procedure and standard reference material. The certified reference material(CRM)s for B-doped Si thin film and analysis specimens and the analysis specimens were prepared by an ion beam sputter deposition method. These samples were certified by inductively coupled plasma mass spectrometry(ICP-MS) with isotope dilution method which il one of the most quantitative methods in chemical analysis. By using an international standard procedure(ISO/DIS-l4237) for the quantitative analysis of B in Si by SIMS, a domestic RRT was performed for these specimens. Although only a few laboratories participated in this RRT, the average B concentration well agreed with the certified value within 2% error.

Design and Simulation of Integral Twist Control for Helicopter Vibration Reduction

  • Shin, Sang-Joon;Cesnik Carlos E. S.;Hall Steven R.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.24-34
    • /
    • 2007
  • Closed-loop active twist control of integral helicopter rotor blades is investigated in this paper for reducing hub vibration induced in forward flight. A four-bladed fully articulated integral twist-actuated rotor system has been designed and tested successfully in wind tunnel in open-loop actuation. The integral twist deformation of the blades is generated using active fiber composite actuators embedded in the composite blade construction. An analytical framework is developed to examine integrally twisted helicopter blades and their aeroelastic behavior during different flight conditions. This aeroelastic model stems from a three-dimensional electroelastic beam formulation with geometrical-exactness, and is coupled with finite-state dynamic inflow aerodynamics. A system identification methodology that assumes a linear periodic system is adopted to estimate the harmonic transfer function of the rotor system. A vibration minimizing controller is designed based on this result, which implements a classical disturbance rejection algorithm with some modifications. Using the established analytical framework, the closed-loop controller is numerically simulated and the hub vibratory load reduction capability is demonstrated.

Efficient Simulation of Hysteretic Behavior of Diagonally Reinforced Concrete Coupling Beams (효율적인 대각보강 콘크리트 연결보의 이력거동 예측)

  • Koh, Hyeyoung;Han, Sang Whan;Lee, Chang Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • Diagonally reinforced concrete coupling beams (DRCB) play an important role in coupled shear wall systems since these elements dissipate most of seismic input energy under earthquake loading. For reliable seismic performance evaluation using nonlinear response history analysis, it is important to use an accurate analytical model for DRCBs. In this study, the Pinching4 model is used as a base model to simulate the cyclic behavior of DRCBs. For simulating the cyclic behavior of DRCBs using the Pinching4 model, the analytical parameters for backbone curve, pinching and cyclic deterioration in strength and stiffness should be computed. To determine the proper values of the constituent analytical parameters efficiently and accurately, this study proposes the empirical equations for the analytical parameters using regression analyses. It is shown that the hysteretic behavior of coupling beams can be simulated efficiently and accurately using the proposed numerical model with the proposed empirical equations of model parameters.

Effects of Light Incident Mode on Optical Scattering of Au Nanoparticle by Localized Surface Plasmon Resonance (빔의 입사모드가 금 나노입자의 국소표면플라즈몬 산란광에 미치는 영향)

  • Lee, Taek-Sung;Lee, Kyeong-Seok;Kim, Won-Mok;Lee, Jang-Kyo;Byun, Seok-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.307-313
    • /
    • 2009
  • Quantitative analysis of optical scattering intensities from a Au nanoparticle with a diameter of 100 nm, which is effected by the localized surface plasmon resonance (LSPR), were numerically carried out by using a dark-field detection scheme on prism basal plane for two different beam incident modes of reflectance (R-mode) and transmittance (T-mode). Two-dimensional finite difference time domain (FDTD) algorithm was adopted, and its applicabilibility was verified by comparing the simulation results with the theoretical ones. Simulation results of the scattered light intensities from a Au nanoparticle revealed that the scattered intensity of the T-mode was much stronger than that of R-mode. Comparison of the calculated results with the theoretical intensity distribution on the prism showed that the scattered intensity is marimized when the evanescent field, which is generated from the interface of prism and air at TIR angle, is coupled with Au nanoparticle.

A Study on the Vibration of Characteristics of 3-Dimension Submerged Vehicle in Consideration of Fluid-Structure Interaction (유체력을 고려한 3차원 수중압력선체의 진동특성에 관한 연구)

  • 손충렬;황인하;이강수
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.81-88
    • /
    • 2000
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures or ships is possible only when the fluid-structure interaction is understood, as the whole or part of the structure is in contact with water. Specially, the importance of the added mass is not necessary to say like the submerged vehicle, all of the hull body, is positioned in the water. This paper introduce two method to find natural frequency in consideration of fluid-structure modal coupled vibration analysis. The purpose of this study is to analyze of the vibration characteristic of submerged vehicle to obtain the anti-vibration design data, which could be used in the preliminary design stage data. Underwater pressure hull of submerged vehicle is used as the model of this study. The F.E.M model is meshed by shell and beam element. Also, considering of the inner hull weight, mass element is distributed in the direction of hull length. Numerical calculations are accomplished using the commercial B.E.M code. The characteristics of natural frequency(eigenvalues), mode shape(eigenvectors) and frequency-displacement response are analyzed. The results of this study will be used as the useful design data in preliminary anti-vibration design stage.

  • PDF