DOI QR코드

DOI QR Code

Effects of Light Incident Mode on Optical Scattering of Au Nanoparticle by Localized Surface Plasmon Resonance

빔의 입사모드가 금 나노입자의 국소표면플라즈몬 산란광에 미치는 영향

  • 이택성 (한국과학기술연구원 박막재료연구센터) ;
  • 이경석 (한국과학기술연구원 박막재료연구센터) ;
  • 김원목 (한국과학기술연구원 박막재료연구센터) ;
  • 이장교 ((주)인사이드옵틱스) ;
  • 변석주 ((주)인사이드옵틱스)
  • Published : 2009.04.01

Abstract

Quantitative analysis of optical scattering intensities from a Au nanoparticle with a diameter of 100 nm, which is effected by the localized surface plasmon resonance (LSPR), were numerically carried out by using a dark-field detection scheme on prism basal plane for two different beam incident modes of reflectance (R-mode) and transmittance (T-mode). Two-dimensional finite difference time domain (FDTD) algorithm was adopted, and its applicabilibility was verified by comparing the simulation results with the theoretical ones. Simulation results of the scattered light intensities from a Au nanoparticle revealed that the scattered intensity of the T-mode was much stronger than that of R-mode. Comparison of the calculated results with the theoretical intensity distribution on the prism showed that the scattered intensity is marimized when the evanescent field, which is generated from the interface of prism and air at TIR angle, is coupled with Au nanoparticle.

Keywords

References

  1. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, 'Plasmonics - A route to nanoscale optical devices', Adv. Mater., Vol. 13, No. 19, p. 1501, 2001 https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
  2. X. D. Hoa, A. G. Kirk, and M. Tabrizan, 'Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress', Biosensors and Bioelectronics, Vol. 23, p. 151, 2007 https://doi.org/10.1016/j.bios.2007.07.001
  3. K. A. Willets and R. P. Van Duyne, 'Localized surface plasmon resonance spectroscopy and sensing', Annu. Rev. Phys. Chem., Vol. 58, p. 267, 2007 https://doi.org/10.1146/annurev.physchem.58.032806.104607
  4. N. Nath and A. Chilkoti, 'Label free colorimetric biosensing using nanoparticles', J. Flouresence, Vol. 14, No. 4, p. 377, 2004 https://doi.org/10.1023/B:JOFL.0000031819.45448.dc
  5. A. J. Haes and R. P. Van Duyne, 'A unified view of propagating and localized surface Plasmon resonance biosensors', Anal. Bioanal Chem., Vol. 379, p. 920, 2004 https://doi.org/10.1007/s00216-004-2708-9
  6. J. J. Mock, M. Barbic, D. R. Smith, and D. A. Schultz, 'Shape effects in plasmon resonance of individual colloidal silver nanoparticles', J. Chem. Phys., Vol. 116, No. 15, p. 6755, 2002 https://doi.org/10.1063/1.1462610
  7. K. S. Lee and M. A. El-Sayed, 'Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition', J. Phys. Chem. B, Vol. 110, No. 39, p. 19220, 2006 https://doi.org/10.1021/jp062536y
  8. C. Sonnichsen, S. Geier, N. E. Hecker, V. Von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, 'Spectroscopy of single metallic nanoparticles using total internal reflection microscopy', Appl. Phys. Lett., Vol. 77, No. 19, p. 2949, 2000 https://doi.org/10.1063/1.1323553
  9. W. P. Hall, G. Hartland, R. Van Duyne, and G. Mentor, 'Single nanoparticle spectroscopy: An analysis of sample preparation and microscopy techniques', Nanoscape, Vol. 2, No. 1, p. 35, 2005
  10. D. M. Sullivan, 'Electromagnetic Simulation Using the FDTD Method', IEEE Press, p. 1, 2000
  11. C. Oubre and P. Nordlander, 'Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method', J. Phys. Chem. B, Vol. 108, No. 46, p. 17740, 2004 https://doi.org/10.1021/jp0473164
  12. L. J. Sherry, S. H. Chang, R. P. Van Duyne, B. J. Wiley, and Y. Xia, 'Localized surface plasmon resonance spectroscopy of single silver nanocubes', Nano Lett., Vol. 5, No. 10, p. 2034, 2005 https://doi.org/10.1021/nl0515753
  13. S. A. Love, B. J. Marquis, and C. L. Haynes, 'Recent advances in nanomaterial plasmonics: Fundamental studies and aplications', Appl. Spectroscopy, Vol. 62, No. 12, p. 346A, 2008 https://doi.org/10.1366/000370208786822331
  14. A. Taflove and S. C. Hagness, 'Computational Electrodynamics: The Finite-Difference Time- Domain Method', Artech House, Inc., p. 353, 2005
  15. E. D. Palik, 'Handbook of Optical Constants of Solids', Academic Press, Inc., p. 286, 1985
  16. G. R. Fowles, 'Introduction to Modern Optics', 2nd edition, Holt, Rinehart and Winston, p. 38, 1975
  17. C. F. Bohren and D. R. Huffman, 'Absorption and Scattering of Light by Small Particles', John Wiley & Sons, Inc., p. 57, 1983
  18. F. Fornel, 'Evanescent Waves', Springer-Verlag, p. 3, 2001
  19. D. L. Feldheim and C. A. Foss, Jr., 'Metal Nanoparticles: Cynthesis, Characterization, and Applications', Marcel Dekker, Inc., p. 89, 2002
  20. K. S. Lee and M. A. El-Sayed, 'Dependnece of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index', J. Phys. Chem. B, Vol. 109, No. 43, p. 20331, 2005 https://doi.org/10.1021/jp054385p