본 연구는 초등학교 1학년 다문화학생들의 수 세기를 조사하고, 이를 토대로 수 세기 지도를 위한 시사점을 도출하고자 하였다. 이를 위해 초등학교 1학년 다문화학생 3명을 실험군으로, 비다문화학생 3명을 비교군으로 하여 일대일 면담을 하였다. 학생들의 수 세기를 정확성, 효율성, 유창성의 관점에서 비교 분석하였으며, 연구 결과는 다음과 같다. 말로 앞으로 세기에서는 다문화학생의 언어적 특성에 따라, 거꾸로 세기에서는 수학 학업성취 수준에 따라 수 세기 능력에 차이가 나타났다. 고유어 수사로 100까지 10씩 뛰어 세기에서는 수학 학업성취 수준에 따라 차이가 나타났다. 여러 가지 방법으로 구체물 모두 세기에 영향을 미치는 요인은 구체물의 개수에 따라 다를 수 있다. 다문화학생들은 구체물을 여러 가지 방법으로 모두 세기와 비교해 제한된 수만큼 세기에서 단순한 세기 전략을 사용하는 특징을 보였다. 본 연구의 결과는 초등학교 저학년 학생들의 수 세기에 대한 기초 자료를 제공하여 수 세기의 효과적인 교수·학습 지도 방안 마련에 기여할 수 있을 것이다.
This paper discusses a photon-counting linear discriminant analysis (LDA) with computational integral imaging (II). The computational II method reconstructs three-dimensional (3D) objects on the reconstruction planes located at arbitrary depth-levels. A maximum likelihood estimation (MLE) can be used to estimate the Poisson parameters of photon counts in the reconstruction space. The photon-counting LDA combined with the computational II method is developed in order to classify partially occluded objects with photon-limited images. Unknown targets are classified with the estimated Poisson parameters while reconstructed irradiance images are trained. It is shown that a low number of photons are sufficient to classify occluded objects with the proposed method.
Journal of information and communication convergence engineering
/
제19권2호
/
pp.102-107
/
2021
In this paper, we propose a new three-dimensional (3D) photon-counting integral imaging reconstruction method using a merging reconstruction process and maximum likelihood estimation (MLE). The conventional 3D photon-counting reconstruction method extracts photons from elemental images using a Poisson random process and estimates the scene using statistical methods such as MLE. However, it can reduce the photon levels because of an average overlapping calculation. Thus, it may not visualize 3D objects in severely low light environments. In addition, it may not generate high-quality reconstructed 3D images when the number of elemental images is insufficient. To solve these problems, we propose a new 3D photon-counting merging reconstruction method using MLE. It can visualize 3D objects without photon-level loss through a proposed overlapping calculation during the reconstruction process. We confirmed the image quality of our proposed method by performing optical experiments.
본 논문에서는 머신비전을 이용하여 컨베이어 시스템에서 이동하는 객체를 계수하는 알고리즘을 제안하였다. 영상처리를 이용한 객체 계수 시스템은 유동인구나 교통량 파악 등의 다양한 산업현장에서 사용되고 있으며, 주로 템플릿 매칭이나 기계학습의 방법으로 검출하여 추적 후 계수한다. 하지만 빠르게 움직이는 컨베이어 벨트위의 물체를 검출하기 위해서는 연산에 소요되는 시간이 짧아야 하므로 영역기반의 방법으로 영상처리를 하였다. 본 연구에서는 모양과 크기, 그리고 색깔이 비슷한 전복 치패를 계수하였다. 컨베이어 시스템은 한 방향으로 동작하는 특성을 이용하여 첫 번째 영역에서 치패를 검출하여 정보를 얻은 것을 기반으로 다음 프레임에서의 물체의 위치 범위를 계속적으로 변화하여 치패를 검출하고 각각의 획득한 정보를 비교하여 계수하였다. 치패가 간격을 두고 이동 시에는 정확하게 계수됨을 확인하였으며, 치패가 붙어서 오는 경우에는 크기정보를 이용하여 계수하여 중복되거나 누락됨을 방지하였다. 본 논문에서 제안한 알고리즘은 컨베이어 시스템 위에서 움직이는 다양한 객체 계수 제어에 적용할 수 있을 것이다.
대부분의 비즈니스에서는 고객의 움직임에 대한 의미 있는 정보를 얻어낼 수 있는 유동인구 계측 데이터가 매우 중요하게 작용한다. 슈퍼마켓의 경우, 손님들의 수에 따라 계산대 수를 늘리거나 줄일 수 있다. 스마트 빌딩 또한, 각 객실의 수용 인원에 따라 냉난방 시스템을 제어하는 스마트 컨트롤러 같이 다양하게 적용될 수 있다. 카메라 기반 유동인구 계측 시스템과 같이 첨단 기술을 활용하여 보다 정확한 결과를 얻을 수도 있지만, 가격이 비싸고, 현장 설치가 어려우며, 사생활 침해의 문제가 발생하기도 한다. 본 논문에서는 특정 통로 혹은 IR 적외선 센서가 설치된 출입구의 유동인구 계측 방법을 제시한다. 나아가, 사람과 다른 물체를 구분하여 인식하는 방법을 제시하는데, 해당 솔루션은 저렴하고, 설치가 간편하며, 무엇보다 실시간 계측이 가능하다. 우리의 유동인구 계측 솔루션은 약 95%의 정확도를 보이고 있다.
Digital image processing is a process to analyze a large volume of information on digital images. In this study, Artemia hatching rate was measured by automatically classifying and counting cysts and larvae based on color imaging data from cyst hatching experiments using an image processing technique. The Artemia hatching rate estimation consists of a series of processes; a step to convert the scanned image data to a binary image data, a process to detect objects and to extract their shape information in the converted image data, an analysis step to choose an optimal discriminant function, and a step to recognize and classify the objects using the function. The function to classify Artemia cysts and larvae is optimally estimated based on the classification performance using the areas and the plan-form factors of the detected objects. The hatching rate using the image data obtained under the different experimental conditions was estimated in the range of 34-48%. It was shown that the maximum difference is about 19.7% and the average root-mean squared difference is about 10.9% as the difference between the results using an automatic counting (this study) and a manual counting were compared. This technique can be applied to biological specimen analysis using similar imaging information.
수 세기는 수 개념 및 연산과의 관련성으로 인해 수학 학습에서 기초적이면서도 중요한 위상을 차지한다. 특히 큰 수 세기는 수학 학습 초기의 수 개념 도입시 수 세기가 요구하는 일대일 대응이나 기수의 원리 등은 물론 자릿값의 이해를 포함하는 구조적 세기라는 점에서 핵심 학습 요소라 할 만하다. 본 연구는 현행 교과서 활동으로 구성되어 있지 않아 학생들의 경험이 전무할 것으로 예상되는 큰 수에 대한 수 세기 가능 여부 및 세기 전략을 파악하여 교수학적 시사점을 도출하는 것을 목적으로 한다. 이를 위해 세 자리 수까지 학습하였고 교과서 활동으로서 묶어 세기와 뛰어 세기를 경험한 초등학교 2학년 학생 89명을 대상으로 세 자리 수만큼의 대상이 불규칙적으로 배열된 그림에서 수 세기 및 세기 방법을 묻는 문항으로 구성된 검사지를 제공하였다. 학생 응답을 정오답률과 사용한 세기 전략 및 인지적 특징 측면에서 분석한 결과, 오답률이 매우 높고 십진 원리, 묶어 세기, 1씩 세기, 부분합 전략 등의 사용이 확인되었다. 이와 같은 분석 결과에 기초하여 교과서 활동으로서 큰 수 세기 활동을 포함할 필요성을 비롯한 몇 가지 교수학적 시사점을 도출하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권12호
/
pp.4866-4888
/
2020
One major and time-consuming task in fish production is obtaining an accurate estimate of the number of fish produced. In most Nigerian farms, fish counting is performed manually. Digital image processing (DIP) is an inexpensive solution, but its accuracy is affected by noise, overlapping fish, and interfering objects. This study developed a catfish recognition and counting algorithm that introduces detection before counting and consists of six steps: image acquisition, pre-processing, segmentation, feature extraction, recognition, and counting. Images were acquired and pre-processed. The segmentation was performed by applying three methods: image binarization using Otsu thresholding, morphological operations using fill hole, dilation, and opening operations, and boundary segmentation using edge detection. The boundary features were extracted using a chain code algorithm and Fourier descriptors (CH-FD), which were used to train an artificial neural network (ANN) to perform the recognition. The new counting approach, based on the geometry of the fish, was applied to determine the number of fish and was found to be suitable for counting fish of any size and handling overlap. The accuracies of the segmentation algorithm, boundary pixel and Fourier descriptors (BD-FD), and the proposed CH-FD method were 90.34%, 96.6%, and 100% respectively. The proposed counting algorithm demonstrated 100% accuracy.
In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.