• Title/Summary/Keyword: count time series

Search Result 37, Processing Time 0.018 seconds

Model Checking for Time-Series Count Data

  • Lee, Sung-Im
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.359-364
    • /
    • 2005
  • This paper considers a specification test of conditional Poisson regression model for time series count data. Although conditional models for count data have received attention and proposed in several ways, few studies focused on checking its adequacy. Motivated by the test of martingale difference assumption, a specification test via Ljung-Box statistic is proposed in the conditional model of the time series count data. In order to illustrate the performance of Ljung- Box test, simulation results will be provided.

Integer-Valued GARCH Models for Count Time Series: Case Study (계수 시계열을 위한 정수값 GARCH 모델링: 사례분석)

  • Yoon, J.E.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.1
    • /
    • pp.115-122
    • /
    • 2015
  • This article is concerned with count time series taking values in non-negative integers. Along with the first order mean of the count time series, conditional variance (volatility) has recently been paid attention to and therefore various integer-valued GARCH(generalized autoregressive conditional heteroscedasticity) models have been suggested in the last decade. We introduce diverse integer-valued GARCH(INGARCH, for short) processes to count time series and a real data application is illustrated as a case study. In addition, zero inflated INGARCH models are discussed to accommodate zero-inflated count time series.

Threshold-asymmetric volatility models for integer-valued time series

  • Kim, Deok Ryun;Yoon, Jae Eun;Hwang, Sun Young
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.295-304
    • /
    • 2019
  • This article deals with threshold-asymmetric volatility models for over-dispersed and zero-inflated time series of count data. We introduce various threshold integer-valued autoregressive conditional heteroscedasticity (ARCH) models as incorporating over-dispersion and zero-inflation via conditional Poisson and negative binomial distributions. EM-algorithm is used to estimate parameters. The cholera data from Kolkata in India from 2006 to 2011 is analyzed as a real application. In order to construct the threshold-variable, both local constant mean which is time-varying and grand mean are adopted. It is noted via a data application that threshold model as an asymmetric version is useful in modelling count time series volatility.

Automatic order selection procedure for count time series models (계수형 시계열 모형을 위한 자동화 차수 선택 알고리즘)

  • Ji, Yunmi;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.147-160
    • /
    • 2020
  • In this paper, we study an algorithm that automatically determines the orders of past observations and conditional mean values that play an important role in count time series models. Based on the orders of the ARIMA model, the algorithm constitutes the order candidates group for time series generalized linear models and selects the final model based on information criterion among the combinations of the order candidates group. To evaluate the proposed algorithm, we perform small simulations and empirical analysis according to underlying models and time series as well as compare forecasting performances with the ARIMA model. The results of the comparison confirm that the time series generalized linear model offers better performance than the ARIMA model for the count time series analysis. In addition, the empirical analysis shows better performance in mid and long term forecasting than the ARIMA model.

Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application (조건부 포아송 및 음이항 분포를 이용한 영-과잉 INGARCH 자료 분석)

  • Yoon, J.E.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.583-592
    • /
    • 2015
  • Zero-inflation has recently attracted much attention in integer-valued time series. This article deals with conditional variance (volatility) modeling for the zero-inflated count time series. We incorporate zero-inflation property into integer-valued GARCH (INGARCH) via conditional Poisson and negative binomial marginals. The Cholera frequency time series is analyzed as a data application. Estimation is carried out using EM-algorithm as suggested by Zhu (2012).

An Analysis of Panel Count Data from Multiple random processes

  • Park, You-Sung;Kim, Hee-Young
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.265-272
    • /
    • 2002
  • An Integer-valued autoregressive integrated (INARI) model is introduced to eliminate stochastic trend and seasonality from time series of count data. This INARI extends the previous integer-valued ARMA model. We show that it is stationary and ergodic to establish asymptotic normality for conditional least squares estimator. Optimal estimating equations are used to reflect categorical and serial correlations arising from panel count data and variations arising from three random processes for obtaining observation into estimation. Under regularity conditions for martingale sequence, we show asymptotic normality for estimators from the estimating equations. Using cancer mortality data provided by the U.S. National Center for Health Statistics (NCHS), we apply our results to estimate the probability of cells classified by 4 causes of death and 6 age groups and to forecast death count of each cell. We also investigate impact of three random processes on estimation.

  • PDF

Statistical Analysis of Count Rate Data for On-line Seawater Radioactivity Monitoring

  • Lee, Dong-Myung;Cong, Binh Do;Lee, Jun-Ho;Yeo, In-Young;Kim, Cheol-Su
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.2
    • /
    • pp.64-71
    • /
    • 2019
  • Background: It is very difficult to distinguish between a radioactive contamination source and background radiation from natural radionuclides in the marine environment by means of online monitoring system. The objective of this study was to investigate a statistical process for triggering abnormal level of count rate data measured from our on-line seawater radioactivity monitoring. Materials and Methods: Count rate data sets in time series were collected from 9 monitoring posts. All of the count rate data were measured every 15 minutes from the region of interest (ROI) for $^{137}Cs$ ($E_{\gamma}=661.6keV$) on the gamma-ray energy spectrum. The Shewhart ($3{\sigma}$), CUSUM, and Bayesian S-R control chart methods were evaluated and the comparative analysis of determination methods for count rate data was carried out in terms of the false positive incidence rate. All statistical algorithms were developed using R Programming by the authors. Results and Discussion: The $3{\sigma}$, CUSUM, and S-R analyses resulted in the average false positive incidence rate of $0.164{\pm}0.047%$, $0.064{\pm}0.0367%$, and $0.030{\pm}0.018%$, respectively. The S-R method has a lower value than that of the $3{\sigma}$ and CUSUM method, because the Bayesian S-R method use the information to evaluate a posterior distribution, even though the CUSUM control chart accumulate information from recent data points. As the result of comparison between net count rate and gross count rate measured in time series all the year at a monitoring post using the $3{\sigma}$ control charts, the two methods resulted in the false positive incidence rate of 0.142% and 0.219%, respectively. Conclusion: Bayesian S-R and CUSUM control charts are better suited for on-line seawater radioactivity monitoring with an count rate data in time series than $3{\sigma}$ control chart. However, it requires a continuous increasing trend to differentiate between a false positive and actual radioactive contamination. For the determination of count rate, the net count method is better than the gross count method because of relatively a small variation in the data points.

A generalized regime-switching integer-valued GARCH(1, 1) model and its volatility forecasting

  • Lee, Jiyoung;Hwang, Eunju
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.29-42
    • /
    • 2018
  • We combine the integer-valued GARCH(1, 1) model with a generalized regime-switching model to propose a dynamic count time series model. Our model adopts Markov-chains with time-varying dependent transition probabilities to model dynamic count time series called the generalized regime-switching integer-valued GARCH(1, 1) (GRS-INGARCH(1, 1)) models. We derive a recursive formula of the conditional probability of the regime in the Markov-chain given the past information, in terms of transition probabilities of the Markov-chain and the Poisson parameters of the INGARCH(1, 1) process. In addition, we also study the forecasting of the Poisson parameter as well as the cumulative impulse response function of the model, which is a measure for the persistence of volatility. A Monte-Carlo simulation is conducted to see the performances of volatility forecasting and behaviors of cumulative impulse response coefficients as well as conditional maximum likelihood estimation; consequently, a real data application is given.

Effects of Overdispersion on Testing for Serial Dependence in the Time Series of Counts Data

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.829-843
    • /
    • 2010
  • To test for the serial dependence in time series of counts data, Jung and Tremayne (2003) evaluated the size and power of several tests under the class of INARMA models based on binomial thinning operations for Poisson marginal distributions. The overdispersion phenomenon(i.e., a variance greater than the expectation) is common in the real world. Overdispersed count data can be modeled by using alternative thinning operations such as random coefficient thinning, iterated thinning, and quasi-binomial thinning. Such thinning operations can lead to time series models of counts with negative binomial or generalized Poisson marginal distributions. This paper examines whether the test statistics used by Jung and Tremayne (2003) on serial dependence in time series of counts data are affected by overdispersion.

COUNTING STATISTICS MODIFIED BY TWO DEAD TIMES IN SERIES

  • Choi, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.287-300
    • /
    • 2011
  • Counting statistics modified by introducing two dead times in series under a Poisson input distribution are discussed. A previous study examined the two cases of series combinations of nonextended-extended (NE-E) and extended-extended (EE) dead times. The present study investigated the remaining two cases of extended-nonextended (E-NE) and nonextended-nonextended (NE-NE) dead times. For the three time origins of the counting processes - ordinary, equilibrium, and shifted processes - a set of formulae was newly developed from a general formulation and presented for the event time interval densities, total densities, and exact mean and variance of the counts in a given counting duration. The asymptotic expressions for the mean and variance of the counts, which are most convenient for applications, were fully listed. The equilibrium mean count rates distorted by the three dead times in series were newly derived from the information obtained in these studies. An application of the derived formulae is briefly discussed.