• Title/Summary/Keyword: cotton fibers

Search Result 234, Processing Time 0.024 seconds

Antimicrobial and Water Repellency Effect of Functional Cotton Fiber with ODDMAC(octadecyl dimethyl(3-triethoxy silylpropyl) ammonium chloride) (ODDMAC를 이용한 항균성 및 발수성 동시 발현이 가능한 기능성 면섬유)

  • Jeon, Hyeji;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.276-287
    • /
    • 2019
  • In this study, cotton fibers were coated with a different weight percentage of octadecyl dimethyl(3-triethoxy silylpropyl) ammonium chloride(ODDMAC) to improve antimicrobial and water repellent properties. First, the ODDMAC dissolved in ethanol to prepare a solution. Then the cotton fibers were immersed in the ODDMAC/ethanol solution for 10 minutes at ambient temperature and dried at 80℃ for 3 minutes followed by curing. The treated cotton fibers were characterized by scanning electron microscopy(SEM) and x-ray photoelectron spectroscopy(XPS). The treated cotton fibers revealed sufficient antimicrobial activity against Klebsiella pneumoniae(ATCC 4352) and Staphylococcus aureus(ATCCBAA-1707). The hydrophobic nature of the treated cotton fibers was characterized by contact angle measurement. The results showed that the cotton fibers treated with the ODDMAC showed excellent hydrophobic properties which improved to 121°.

Hydrogen Storage by Carbon Fibers Synthesized by Pyrolysis of Cotton Fibers

  • Sharon, Maheshwar;Sharon, Madhuri;Kalita, Golap;Mukherjee, Bholanath
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.39-43
    • /
    • 2011
  • Synthesis of carbon fibers from cotton fiber by pyrolysis process has been described. Synthesis parameters are optimized using Taguchi optimization technique. Synthesized carbon fibers are used for studying hydrogen adsorption capacity using Seivert's apparatus. Transmission electron microscopy analysis and X-ray diffraction of carbon fiber from cotton suggested it to be very transparent type material possessing graphitic nature. Carbon synthesized from cotton fibers under the conditions predicted by Taguchi optimization methodology (no treatment of cotton fiber prior to pyrolysis, temperature of pyrolysis $800^{\circ}C$, Argon as carrier gas and paralyzing time for 2 h) exhibited 7.32 wt% hydrogen adsorption capacity.

Effects on Mechanical Strength Improvement of Liner Paper using Recycled Fibres from Waste Cotton Clothes (폐 면직물 재활용 섬유를 이용한 라이너지의 강도개선 효과)

  • Hong, Seok-Jun;Park, Jung-Yoon;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.94-102
    • /
    • 2014
  • The physical and chemical properties of recycled fibers from mixed waste paper are more and more deteriorated because of unknown history of recycling times. In order to improve the mechanical properties of liner paper, the recycled fibers from wasted cotton clothes were used in papermaking process, and their applicabilities were evaluated in several points of fiber modification. Thus, two kinds of fiberizing methods from waste cotton clothes were considered by using rotary sandpaper and grinder mill. Finally, the rotary sandpaper method was relatively desirable in preserving longer fiber length and fibrillated fiber surface. The recycled cotton fibers by swelling treatment with NaOH and bleaching with reductive chemicals were mixed with OCC fibers, and the handsheets were prepared to basis weight of $80g/m^2$ and evaluated the mechanical properties of paper. The fibrous properties showed outstanding results in freeness and WRV improvements by alkali treatment and high brightness by reductive bleaching treatment. The physical and mechanical properties of sheet by mixing OCC fibers and recycled cotton fibers were also highly improved in tensile, burst strength and specially folding resistance.

Effect of the changes in Micropore Structure on the Dyeability of BTCA Finished Cotton Fibers (BTCA로 방추가공된 면섬유의 기공구조 변화가 염색성에 미치는 영향)

  • 최연주;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.11
    • /
    • pp.1300-1306
    • /
    • 2003
  • Cotton fibers were treated, with 1, 2, 3, 4-butanetetracarboxylic acid (BTCA) which is formaldehyde-free reagent to impart durable press performance. The dyeability, dyeing rate, and diffusion coefficient, of BTCA treated cottons were compared to prove the changes of pore size structure using direct dyes and disperse dyes. Diffusion coefficients of BTCA treated cotton fibers were determined at acidic conditions to figure out the effect of swelling. Since the dyeability of BTCA treated cotton fibers dyed with direct dyes were reduced, it is considered that the dyeability to direct dyes is related to the quantity of residual large pores. But, the dyeability to disperse dyes were increased due to the less reduction of small pore sizes and the increase of hydrophobicity in BTCA treated cotton cellulose. The dyeability to direct dye and disperse dye were decreased more at acidic conditions than at neutral conditions. It seemed that the swelling of pores in the fiber were inhibited.

The Separated Refining System for Cotton Staple and Linter Fibers: Refining Efficiency and Paper Properties (스테이플 및 린터 면 섬유의 분리 고해 특성에 관한 연구: 고해 효율과 종이 물성)

  • 윤성훈;이영석;김태영;김진영
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.4
    • /
    • pp.8-16
    • /
    • 2003
  • The objective of this study was to investigate the potential application of the separated refining system in the papermaking process using cotton pulps. The cotton staple and linter fibers were expected to show a great difference in their refining responses due to their morphological and physical differences. Experiments were conducted to examine the differences in flocculation tendency, CED viscosity, fiber length, handsheet properties and the SEM surface images between staple and linter fibers at a given refining degree. These fibers were also subjected to separated refining in a laboratory-scale beater and in a mill-scale refiner as well. The effect of the separated refining on the refining rates and papermaking properties were evaluated. Results obtained are summarized as follows: 1. Fiber flocculation tendency of cotton staple was estimated to be significantly greater than that of linter fibers; 2. The staple fibers showed higher cellulose DP, longer fiber length and higher sheet strength at a given refining degree compared to linter fibers, but remarkably slower refining rate was observed; 3. The separated refining system exhibited a significant increase in sheet strengths, especiauy in folding endurance, with an increase in the fibrillation on the surface of staple fibers, but slightly lower or comparable fiber length after refining to the mixed refining system; 4. Similar results were also obtained from the machine trial in which about 7-8% energy saving effects were achived in the separated refining system. On the basis of the results observed in this study, it was concluded that a significant increase in paper strength and a substantial reduction in refining energy consumption could be achieved using the separated refining system for the cotton staple and linter fiber stock refining.

Dyeing Properties and colorfastness of Direct Dyed-Ramie, Flax, and Cotton (모시, 아마, 면의 직접염료 염색에서 염색성과 염색 견뢰도에 대한 연구)

  • 방혜경;최인려
    • Journal of the Korean Society of Costume
    • /
    • v.18
    • /
    • pp.283-289
    • /
    • 1992
  • In this paper, dyeing properties and colorfastness of ramie, flax, and cotton fabrics for direct dyes were compared. When dyed in a same liquor-goods ratio, in case of green dyes, colorfastness to light was similar for three fibers but in case of red dyes, cotton had a lower level. For colorfastness to laundering, there fibers were similar and three were no consistent differences. The degree of stain about white cotton fabric was higher in case of red dyes and it showed the difference of dye's properties. The degree of stain about white wool fabric showed the highs resistance or stain and little stain was seen. This result represented that the dyes. used were proper direct dyes for cellulosic fibers. For the difference of shade, the cotton was consistently brighter and the shade of ramie was darker than that of cotton and flax. This might mean that optical effects arose from the comparatively large cross-sectional size of the ramie fiber and its highly oriented structure.

  • PDF

Enzymatic Hydrolysis of Cotton Fibers in Supercritical $CO_2$

  • Gayrat Muratov;Kim, Chul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.85-88
    • /
    • 2002
  • A study was carried out on the application of supercritical fluid to the hydrolysis of boll fibers of cotton (cultivar Tashkent-6 of Gossypium hirsutum L.) by cellulase enzymes from Trichoderma viride, Trichoderma reesei and Aspergillus niger. Conditions of the enzymatic process were optimized. The stabilities of cellulase enzymes were sustained at the pressure of up to 160 attn for 48 hours at 5$0^{\circ}C$ in supercritical carbon dioxide.

Effect of PFI mill and Valley beater refining on cellulose degree of polymerization, alpha cellulose contents, and crystallinity of wood and cotton fibers

  • Hai, Le Van;Park, Hee Jung;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.4
    • /
    • pp.27-33
    • /
    • 2013
  • Manufacturing fabrics from dissolving cellulosic pulp is increasing in these days. For making high quality of cellulose-based fabrics, control of cellulose DP (degree of polymerization), its alpha cellulose content, its brightness, and its crystallinity are important. To process the cellulosic raw material, refining of cellulosic fibers is essential, and it is important to know if refining affects those important cellulose properties. The effects of PFI mill and Valley beater refining on the alpha-cellulose content, cellulose DP, crystallinity, and paper mechanical properties of wood and two different cotton fibers were studied. The results showed that PFI mill refining rarely affected those properties. Fibers refined by a Valley beater displayed a small reduction in fiber length in comparison with those refined by a PFI mill. However, the Valley beater refining method produced almost no changes in cellulose properties, either. The refining process seemed to have very little effect on the cellulose DP, crystallinity index, or alpha-cellulose content until the freeness decreased to around 300 mL CSF for wood and 100 mL CSF for cotton fibers, respectively. There were also no differences in tensile strength development in two refining methods.

A Study on Dyeability of PEI-treated Cotton Fabric with Polychromatic Natural Dyes (PEI를 처리한 면직물의 다색성 천연염료에 대한 염색성 변화)

  • Lee, Boyoung;Ryu, Hyoseon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.4
    • /
    • pp.590-597
    • /
    • 2013
  • This study examined the change in the dyeability of natural dyes on cotton fabrics by a PEI (polyethyleneimine) pretreatment instead of mordants. Cotton fabrics were treated with PEI and the changes in the dyeability were shown by measuring the amount of PEI on cotton fabrics. Samples treated with PEI were dyed with two natural polychromatic dyes with a different affinity to cotton fibers: Alizarin Red S and Curcumin. The changes in dyeability by three variables (time, temperature and concentration of dyes) on cotton fabrics were analyzed by the K/S value to define optimum dyeing conditions. Subsequently, the PEI treatment improved the dyeability of cotton fabrics with both dyes of low and high affinity to cotton fibers. Thus, PEI could be a suitable heavy metal mordant replacement.

Effect of Environmental Conditions on the Biodegradation of Cellulose Fibers - Effect of Humidity in Soil - (환경 조건에 따른 셀룰로스계 섬유의 생분해성 - 토양 수분율을 중심으로 -)

  • Kang, Yun-Kyung;Park, Chung-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.1027-1036
    • /
    • 2005
  • Based on the correlation analysis result of preceding research, the biodegradabilities of cellulose fibers were closely related to the moisture regain of the samples, which reflects the hydrophilicity and internal structure of the fibers. In addition to this factor, it was expected that the biodegradation conditions influence the biodegradability of fibers. In this study, widely used cellulose fibers including cotton, rayon, and acetate were used. The biodegradabilities of cellulose fibers were measured by soilburial test, and then the degradation behaviors based on each condition were compared. Moreover, the effects of degradation conditions such as humidity of the soil were investigated. Changes in the internal structure of samples were also observed by X-ray analysis according to the soil burial time. It was shown that humidity of soil facilitated the degradation of cotton, rayon, and acetate fibers, showing higher degradation rate with higher humidity in soil. This effect was shown to be much greater in the fibers of high moisture regain such as cotton and rayon. In respect of microstructure change, crystallinities and their crystal size of fibers decreased remarkably in the soil of higher humidity. It was revealed that degradation of crystalline area was more dependent on the soil humidity than that of amorphous area.