DOI QR코드

DOI QR Code

Antimicrobial and Water Repellency Effect of Functional Cotton Fiber with ODDMAC(octadecyl dimethyl(3-triethoxy silylpropyl) ammonium chloride)

ODDMAC를 이용한 항균성 및 발수성 동시 발현이 가능한 기능성 면섬유

  • Jeon, Hyeji (Department of Fiber System Engineering, Yeungnam University) ;
  • Lee, Jaewoong (Department of Fiber System Engineering, Yeungnam University)
  • 전혜지 (영남대학교 파이버시스템공학과) ;
  • 이재웅 (영남대학교 파이버시스템공학과)
  • Received : 2019.12.10
  • Accepted : 2019.12.20
  • Published : 2019.12.27

Abstract

In this study, cotton fibers were coated with a different weight percentage of octadecyl dimethyl(3-triethoxy silylpropyl) ammonium chloride(ODDMAC) to improve antimicrobial and water repellent properties. First, the ODDMAC dissolved in ethanol to prepare a solution. Then the cotton fibers were immersed in the ODDMAC/ethanol solution for 10 minutes at ambient temperature and dried at 80℃ for 3 minutes followed by curing. The treated cotton fibers were characterized by scanning electron microscopy(SEM) and x-ray photoelectron spectroscopy(XPS). The treated cotton fibers revealed sufficient antimicrobial activity against Klebsiella pneumoniae(ATCC 4352) and Staphylococcus aureus(ATCCBAA-1707). The hydrophobic nature of the treated cotton fibers was characterized by contact angle measurement. The results showed that the cotton fibers treated with the ODDMAC showed excellent hydrophobic properties which improved to 121°.

Keywords

References

  1. S. Tarimala, N. Kothari, N. Abidi, E. Hequet, J. Fralick, and L. L. Dai, New Approach to Antibacterial Treatment of Cotton Fabric with Silver Nanoparticle-doped Silica using Sol-gel Process, Journal of Applied Polymer Science, 101, 2938(2006). https://doi.org/10.1002/app.23443
  2. S. J. Park, J. W. Lee, S. S. Kim, and S. O. Lee, Surface Characteristics, Antimicrobial and Photodegradation Effect of Cotton Fibers Coated with $TiO_2$ Nanoparticles and 3-Mercapto-propyltrimethoxysilane(3-MPTMS), Textile Coloration and Finishing, 30, 245(2018). https://doi.org/10.5764/TCF.2018.30.4.245
  3. S. Ivan and S. Branka, Silver Nanoparticles as Antimicrobial Agent: a Case Study on E. coli as a Model for Gram-negative Bacteria, Journal of Colloid and Interface Science, 275, 177(2004). https://doi.org/10.1016/j.jcis.2004.02.012
  4. K. Pinar, W. Lynn, E. O. Dennis, and J. W. Kenneth, Highly Effective Contact Antimicrobial Surfaces via Polymer Surface Modifiers, Langmuir, 23, 4719(2007). https://doi.org/10.1021/la063718m
  5. K. Usami, S. Sugahara, M. Kobayashi, K. Sumimura, T. Hattori, and M. Matsumura, Preparation and Properties of Silica Films with Higher-alkyl Groups, Journal of Non-Crystalline Solids, 260, 199(1999). https://doi.org/10.1016/S0022-3093(99)00577-3
  6. Y. H. Kim, C. W. Nam, J. W. Choi, and J. H. Jang, Durable Antimicrobial Treatment of Cotton Fabrics using N-(-hydroxy)propyl-3-trimethylammonium Chitosan Chloride and Polycarboxylic Acids, Journal of Applied Polymer Science, 88, 1567(2003). https://doi.org/10.1002/app.11845
  7. S. S. Kim, J. E. Park, and J. W. Lee, Properties and Antimicrobial Efficacy of Cellulose Fiber Coated with Silver Nanoparticles and 3-Mercaptopropyltrimethoxysilane (3-MPTMS), Journal of Applied Polymer Science, 199, 2261(2011).
  8. Y. H. Kim and S. Gang, Durable Antimicrobial Finishing of Nylon Fabrics with Acid Dyes and a Quaternary Ammonium Salt, Textile Research Journal, 71, 318(2001). https://doi.org/10.1177/004051750107100407
  9. B. P. Mitesh, A. P. Samir, R. Arabinda, and M. P. Rajni, Synthesis, Characterization and Antimicrobial Activity of Acrylic Copolymers, Journal of Applied Polymer Science, 89, 895(2003). https://doi.org/10.1002/app.11970
  10. K. Akihiko, l. Tomiki, and E. Takeshi, Polymeric Phosphonium Salts as a Novel Class of Cationic Biocides III, Immobilization of Phosphonium Salts by Surface Photografting and Antibacterial Activity of the Surfacetreated Polymer Films, Journal of Polymer Science: Part A Polymer Chemistry, 31, 1467(1993). https://doi.org/10.1002/pola.1993.080310615
  11. E. Kenawy, F. I. Abdel-Hay, A. El-Raheem, R. El-Shanshoury, and M. H. El-Newehy, Biologically Active Polymers V, Synthesis and Antimicrobial Activity of Modified Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) Drivatives with Quaternary Ammonium and Phosphonium Salts, Journal of Polymer Science: Part A Polymer Chemistry, 40, 2384(2002). https://doi.org/10.1002/pola.10325
  12. P. Kurt, L. J. Gamble, and K. J. Wynne, Surface Characterization of Biocidal Polyurethane Modifiers Having Poly(3,3-substituted)oxetane Soft Blocks with Alkylammonium Side Chains, Langmuir, 24, 5816(2008). https://doi.org/10.1021/la800203y
  13. J. Liang, K. Barnes, A. Akdag, S. D. Worley, J. Lee, R. M. Broughton, and T. S. Huang, Improved Antimicrobial Siloxane, Ind. Eng. Chem. Res., 46, 18616(2007).
  14. J. Isquith, E. A. Abbott, and P. A. Walters, Surface-Bonded Antimicrobial Activity of an Organosilicon Quaternary Ammonium Chloride, Applied Microbioi, 24, 859(1972). https://doi.org/10.1128/AEM.24.6.859-863.1972
  15. G. S. Cho, J. S. Cho, and M. Y. Sohn, A Study on the Development of Antimicrobial Finished and Water Repellent Nonwoven Fabrics using Organic Silicon Quaternary Ammonium Salt, Journal of the Korean Society of Clothing and Textiles, 14, 216(1990).
  16. J. Hazziza-Laskar, N. Nurdin, G. Helary, and G. Sauvet, Biocidal Polymers Active by Contact I, Synthesis of Polybutadiene with Pendant Quaternary Ammonium Groups, Journal of Applied Polymer Science, 50, 651 (1993). https://doi.org/10.1002/app.1993.070500410
  17. J. Liang, R. Wu, T. S. Huang, and S. D. Worley, Polymerization of a Hydantoinylsiloxane on Particles of Silicon Dioxide to Produce a Biocidal Sand, Journal of Applied Polymer Science, 97, 1161(2005). https://doi.org/10.1002/app.21814
  18. D. G. Kim, B. H. Lee, and K. C. Song, Preparation of Non-Fluorinated Water Repellent Coating Films Using Methyltrimethoxysilane and Trimethylethoxysilane, Korean Chemical Engineering Research, 57, 177(2019).
  19. P. K. Park, B. O. Lee, H. C. Kim, and H. Y. Kim, Flame Retardant and Water Repellent Finishing of Automobile Indoor Fabrics, Journal of the Korean Society of Dyers and Finishers, 11, 7(1999).
  20. S. M. Park, J. Y. Kim, I. J. Gwon, and N. S. Yun, Flame Resistant Water Repellent Antibacterial Finishing Method for Cotton Textiles, Journal of the Korean Society of Clothing and Textiles, 39, 125(2008).
  21. Y. C. Ko, B. D. Ratner, and A. S. Hoffman, Characterization of Hydrophilic-hydrophobic Polymeric Surfaces by Contact Angle Measurements, Journal of Colloid and Interface Science, 82, 1(1981). https://doi.org/10.1016/0021-9797(81)90117-X
  22. N. Veronovski, M. Sfiligoj-Smole, and J. L. Viota, Characterization of $TiO_2/TiO_2-SiO_2$ Coated Cellulose Textiles, Textile Research Journal, 80(1), 55(2000). https://doi.org/10.1177/0040517509104012
  23. L. Kou, J. Liang, X. Ren, H. B. Kocer, S. D. Worley, R. M. Broughton, and T. S. Huang, Novel N-halamine Silanes, Colloids and Surfaces A: Physicochem. Eng. Aspects, 345, 88(2009). https://doi.org/10.1016/j.colsurfa.2009.04.047
  24. Y. Y. Sun and G. Sun, Durable and Regenerable Antimicrobial Textile Materials Prepared by a Continuous Grafting Process, Journal of Applied Polymer Science, 84, 1592(2002). https://doi.org/10.1002/app.10456
  25. J. R. Kim, S. J. Lee, and S. S. Kim, Color Differences of Standard Samples according to Their Lightness Levels, Textile Coloration and Finishing, 17, 19(2005).
  26. U. Hirobumi, V. Jayalakshmi, and V. Trithala, Color Stability of Dental Composites as a Function of Shade, Journal of Prosthetic Dentistry, 79, 372(1998). https://doi.org/10.1016/S0022-3913(98)70147-7