• Title/Summary/Keyword: corrosion-resistance

Search Result 2,706, Processing Time 0.03 seconds

Experimental Study on Compressive Strength of Concrete Column Retrofitted by Carbon FRP Sheet (탄소섬유시트로 보강된 콘크리트 기둥의 압축성능 평가를 위한 실험연구)

  • Yoo, Youn-Jong;Lee, Kyoung-Hun;Kim, Heecheul;Lee, Young-Hak;Hong, Won-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.119-126
    • /
    • 2008
  • In 1980 and 1990's most of residential buildings were constructed with relatively low strength concrete of 18 MPa. And, columns were designed considering only vertical loads. In this study, compressive strength tests for low strength RC columns retrofitted by carbon fiber sheets were carried out. Carbon fiber sheet provides constructability and high tensile strength as well as good corrosion resistance characteristics. A pair of carbon sheets were wrapped with ${\pm}60^{\circ}$ angle with respect to longitudinal direction of RC column to increase structural capacity against axial and lateral load simultaneously. Strength and strain patterns and failure modes of specimens were analyzed and prediction equation of increased compressive strength of RC column confined by carbon fiber sheet was proposed based on regression analysis.

A Study on the Characteristics Assessment and Fabrication of Distribution Board according to KEMC Standards (KEMC 규정에 의한 분전반의 제작 및 특성 평가에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.63-72
    • /
    • 2017
  • This study fabricated a low-voltage 10 circuit distribution board based on the KEMC (Korea Electrical Manufacturers Cooperative) 2102-610 standard and performed a characteristics assessment of the developed 10 circuit distribution board to secure product stability. The developed 10 circuit distribution board is designed to have the characteristics of insulation materials, as well as resistance to corrosion ultraviolet radiation and mechanical impact. The developed distribution board is fabricated to have an appropriate protection class of enclosure, electric shock prevention and protection circuits, switchgear and its components, internal electrical circuits and connectors, external conduct terminal, insulation characteristics, temperature rise test, heat resistance, etc. The developed 10 circuit distribution board consists of a single phase circuit and 3-phase circuits. It is possible to measure in real time the leakage current generated from the load distribution line by installing a sensor module at the load side of each of the branched switchgears. In addition, it is possible to increase a circuit according to the use and purpose of the load and to also manage and check the load in real time. Temperature rise tests were performed on the developed 10 circuit distribution board at 18 places including the inlet connection, main circuit and distribution circuit bus bars and bus bar supports, etc. The highest temperature of $65.3^{\circ}C$ was measured at the R-Phase of the connection of the MCCB power supply for the branch circuit bus bar and a temperature rise of $61.6^{\circ}C$ was measured at the T-Phase of the load side. When applying thermal stress to an MCCB for 6 hours at $180^{\circ}C$ using a heat resistant experimental device, it was found that the actuator lever was transformed and moved in the tripped state.

Evaluation on Mechanical Properties of Organic of Fiber Reinforced Concrete Using Macro Forta Fiber (매크로 포타 섬유를 사용한 섬유 보강 콘크리트의 역학적 특성 평가)

  • Ryu, Hwa-Sung;Kim, Deuck-Mo;Shin, Sang-Heon;Ryu, Il-Hwan;Joe, Ji-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.321-329
    • /
    • 2017
  • Concrete is a semi-brittle material, so its compressive strength is high but its tensile strength is low. The use of fiber-reinforced concrete to improve the disadvantages of such concrete can be an effective way to toughen effective toughness, and the performance is improved by using steel fiber reinforced concrete for structures that are vulnerable to bending forces. However, alternative materials are required due to corrosion of steel fiber and lowering of workability. The purpose of this study is to evaluate the availability of replacing steel fiber reinforced concrete by evaluating physical properties, mechanical properties and drying shrinkage properties of concrete using macro forta fiber with excellent diffusibility. Experimental results show that the macro forta fiber has better fluidity and mechanical performance than the steel fiber reinforced concrete. It was also confirmed that the crack resistance of concrete using Macro Forta fiber is effective in improving structural cracking and drying shrinkage resistance compared to steel fiber reinforced concrete.

Aluminum Powder Metallurgy Current Status, Recent Research and Future Directions

  • Schaffer, Graham
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.7-7
    • /
    • 2001
  • The increasing interest in light weight materials coupled to the need for cost -effective processing have combined to create a significant opportunity for aluminum P/M. particularly in the automotive industry in order to reduce fuel emissions and improve fuel economy at affordable prices. Additional potential markets for Al PIM parts include hand tools. Where moving parts against gravity represents a challenge; and office machinery, where reciprocating forces are important. Aluminum PIM adds light weight, high compressibility. low sintering temperatures. easy machinability and good corrosion resistance to all advantages of conventional iron bm;ed P/rv1. Current commercial alloys are pre-mixed of either the AI-Si-Mg or AL-Cu-Mg-Si type and contain 1.5% ethylene bis-stearamide as an internal lubricant. The powder is compacted in closed dies at pressure of 200-500Mpa and sintered in nitrogen at temperatures between $580~630^{\circ}C$ in continuous muffle furnace. For some applications no further processing is required. although most applications require one or more secondary operations such as sizing and finishing. These sccondary operations improve the dimension. properties or appearance of the finished part. Aluminum is often considered difficult to sinter because of the presence of a stable surface oxide film. Removal of the oxide in iron and copper based is usually achieved through the use of reducing atmospheres. such as hydrogen or dissociated ammonia. In aluminum. this occurs in the solid st,lte through the partial reduction of the aluminum by magncsium to form spinel. This exposcs the underlying metal and facilitates sintering. It has recently been shown that < 0.2% Mg is all that is required. It is noteworthy that most aluminum pre-mixes contain at least 0.5% Mg. The sintering of aluminum alloys can be further enhanced by selective microalloying. Just 100ppm pf tin chnnges the liquid phase sintering kinetics of the 2xxx alloys to produce a tensile strength of 375Mpa. an increilse of nearly 20% over the unmodified alloy. The ductility is unnffected. A similar but different effect occurs by the addition of 100 ppm of Pb to 7xxx alloys. The lend changes the wetting characteristics of the sintering liquid which serves to increase the tensile strength to 440 Mpa. a 40% increase over unmodified aIloys. Current research is predominantly aimed at the development of metal matrix composites. which have a high specific modulus. good wear resistance and a tailorable coefficient of thermal expnnsion. By controlling particle clustering and by engineering the ceramic/matrix interface in order to enhance sintering. very attractive properties can be achicved in the ns-sintered state. I\t an ils-sintered density ilpproaching 99%. these new experimental alloys hnve a modulus of 130 Gpa and an ultimate tensile strength of 212 Mpa in the T4 temper. In contest. unreinforcecl aluminum has a modulus of just 70 Gpa.

  • PDF

Study of lubrication and rheological properties of urea grease with respect to PTFE powder addition (PTFE 분말 첨가에 따른 우레아 그리스의 윤활 및 유변학 특성 연구)

  • Son, Kihun;Lee, Dongkyu;Lee, Youngseok;Woo, Jaegu;Ha, KiRyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.634-643
    • /
    • 2020
  • In this study, the rheological and tribological properties of urea grease were studied according to the type and amount of polytetrafluoroethylene (PTFE) powders added to the urea grease, which is the most widely used among solid lubricants, to develop an optimal lubrication system. Urea grease was synthesized using 4,4'-methylenebis(phenyl isocyanate)(MDI), oleylamine, and cyclohexylamine, and PTFE powders prepared by dispersion or suspension polymerization process were then added. The basic rheological and tribological properties of the prepared greases were compared. The worked penetration numbers of urea grease decreased with increasing amount of PTFE powders, but both PTFE powders caused no significant changes in heat resistance and copper corrosion resistance. The shear viscosity increased with increasing PTFE powder content, and the dispersion-type PTFE powder was more effective in increasing the viscosity. In the value of the loss coefficient = 1, the shear stress was higher for the grease containing PTFE powders than the non-PTFE added grease, and the dispersion-type PTFE-added grease showed higher viscosity than the suspension-type PTFE-added grease. Finally, urea grease was found to have a low-performance improvement in terms of wear reduction effects by adding PTFE powders, but the load-bearing performance was up to 2.5 times higher for the dispersion-type PTFE and five times higher for the suspension-type PTFE.

Study on the shaping process of turbocharger nozzle slide joint (터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • A turbocharger is an engine supercharger that is driven by exhaust gas. It improves the output and fuel efficiency by increasing the charging efficiency of the mixture gas, which is achieved by changing the rotatory power of the turbine connected to the exhaust passage. It is important to control the supercharging for this purpose. A nozzle slide joint is one of the core parts. Austenitic stainless steel is currently used as the material for this part, and its excellent mechanical properties include high heat resistance and corrosion resistance. However, because of its poor machinability, there are many difficulties in producing products with complicated shapes. Machining is used in the production of nozzle slide joints for high dimensional accuracy after metal powder injection molding. As design variables in this study, we investigated the sintering temperature, product stress, deformation rate, radius of curvature of the punch, and angle of the chamfer punch, which are related to the strain and shapes. The goal is to suggest a forming process using Nitronic 60 that does not require machining to manufacture a nozzle slide joint for a turbocharger. Accordingly, we determined the best process environment using finite-element analysis, the signal-noise ratio, and the Taguchi method for experiment design. The relative density and hydrostatic pressure of the final product were in accordance with the results of the finite element analysis. Therefore, we conclude that the Taguchi method can be applied to the design process of metal powder injection molding.

Strength and Resistance to Chloride Penetration in Concrete Containing GGBFS with Ages (GGBFS를 혼입한 콘크리트의 재령에 따른 강도 및 염소이온 침투 저항성)

  • Park, Jae-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.307-314
    • /
    • 2017
  • Concrete is a durable and cost-benefit construction material, however performance degradation occurs due to steel corrosion exposed to chloride attack. Penetration of chloride ion usually decreases due to hydrates formation and reduction of pores, and the reduced chloride behavior is considered through decreasing diffusion coefficient with time. In the work, HPC (High Performance Concrete) samples are prepared with 3 levels of W/B (water to binder) ratios of 0.37, 0.42, and 0.27 and 3 levels of replacement ratios of 0%, 30% and 50%. Several tests containing chloride diffusion coefficient, passed charge, and compressive strength are performed considering age effect of 28 days and 180 days. Chloride diffusion is more reduced in OPC concrete with lower W/B ratio and GGBFS concrete with 50% replacement ratio shows significant reduction of chloride diffusion in higher W/B ratio. At the age of 28 days, GGBFS concrete with 50% replacement ratio shows more rapid reduction of chloride diffusion than strength development, which reveals that abundant GGBFS replacement has effective resistance to chloride penetration even in the early-aged condition.

A STUDY ON SURFACE ROUGHNESS OF METALS ACCORDING TO FINISHING AND POLISHING PROCEDURES - AN ATOMIC FORCE MICROSCOPE ANALYSIS - (연마방법에 따른 금속의 활택도에 관한 연구 - Atomic Force Microscope를 이용한 -)

  • Park Won-Kyu;Woo Yi-Hyung;Choi Boo-Byung;Lee Sung-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.1
    • /
    • pp.1-19
    • /
    • 2003
  • The surface of metals should be as smooth as possible for optimum comfort, oral hygiene, low plaque retention, and resistance to corrosion. In this study five specimens of each precious metal(type III gold alloy, ceramic gold alloy, and Ag-Pd alloy) were divided into five groups according to finishing and polishing procedures : group 1(sandblaster), group 2(group 1+stone), group 3(group 2+brown rubber), group 4(group 3+green rubber), and group 5(group 4+rouge). Six specimens of each non-precious metal(Co-Cr alloy, Ni-Cr alloy, and Co-Cr-Ti alloy) were divided into six groups: group 1(sandblaster), group 2(group 1+hard stone), group 3(group 2+electrolytic polisher), group 4(group 3+brown hard rubber point), group 5(group 4+green hard rubber point), and group 6(group 5+rouge). Considering factors affecting the rate of abrasion, the same dentist applied each finishing and polishing procedure. In addition, the surface roughness of enamel, resin, and porcelain was evaluated. The effect of finishing and polishing procedures on surface roughness of precious and non-precious metals, enamel, resin, and porcelain was evaluated by means of Atomic Force Microscope(AutoProbe CP. Park Scientific Instruments, U.S.A.) that can image the three dimensional surface profile and measure average surface roughness values of each sample at the same time. The obtained results were as follows : 1. According to finishing and polishing procedures, the surface roughness of type III gold alloy, ceramic gold alloy, and Ag-Pd alloy was decreased in the order of group 1, 2, 3, 4, and 5 (P<0.01). 2. According to finishing and polishing procedures. the surface roughness of Co-Cr alloy, Ni-Cr alloy, and Co-Cr-Ti alloy was decreased in the order of group 1, 2, 3, 4, 5, and 6 (p<0.01). 3. There was not statistically significant difference in the surface roughness among three metals of precious metals in group 1 but was significant difference in group 2, 3, 4, and 5 (P<0.05). 4. There was not statistically significant difference in the surface roughness among three metals of non-precious metals in all groups. 5. When the surface roughness of the smoothest surface of each metal, enamel. porcelain, and resin was compared, porcelain was the smoothest and the surface roughness was decreased in the order of Ni-Cr alloy. Co-Cr alloy. Co-Cr-Ti alloy, resin. Ag-Pd alloy, ceramic gold alloy type III gold alloy, and enamel (P<0.01). The results of this study indicate that the finishing and polishing procedures should be carried out in a logical, systematic sequence of steps and the harder non-precious metals may be less resistance to abrasion than are the softer precious metals.

The Effects of Silica Sol and Modified Latex on the Concrete Surface Protection Cement Mortar for Improvement of Durability of Concrete (콘크리트 내구성 향상을 위한 표면 보호용 시멘트 모르타르에서 실리카 및 개질 라텍스의 영향)

  • Kim, Yong-Hoon;Jeaong, Cheol-Soo;Song, Myong-Shin;Lee, Woong-Geol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.715-722
    • /
    • 2019
  • The durability of concrete structures deteriorates due to the corrosion of rebars and concrete deterioration by harmful ions (CO32-, Cl-, SO42-) penetrating and diffusing from the outside into concrete. Therefore, the use of surface-protection finishing mortar is very important for preventing or delaying the deterioration of concrete. In this study, the possibility of the prevention of deterioration or delay of deterioration of concrete was investigated using natural latex modified with silica sol and calcium ions for cement mortar, which can be used to repair the mortar of deteriorated concrete or for finishing the mortar of concrete. As a result, fine calcium silicate hydrate was formed in the pores of the cement material due to the calcium ions and silica sol components contained in the modified latex component that reduce the pore distribution of the cement mortar, thereby reducing the penetration and diffusion of harmful ions (CO32-, Cl-, and SO42-). Furthermore, the latex component was found to be present in the pores of the cement to improve the alkali resistance and carbonation resistance.

Application of High-Performance Steels to Enhance the Punching Shear Capacity of Two-Way Slabs (2방향 슬래브의 펀칭전단성능 향상을 위한 고성능 철근의 적용)

  • Yang, Jun Mo;Shin, Hyun Oh;Lee, Joo Ha;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • Two-way slabs reinforced with high-performance steels, which have several practical advantages of a reduction of congestion in heavily reinforced members, savings in the cost of labor and repair, the higher corrosion resistance, and a reduction of construction time, were constructed and tested. The influences of the flexural reinforcement ratio, concentrating the reinforcement in the immediate column region, and using steel fiber-reinforced concrete (SFRC) in the slab on the punching shear resistance and post-cracking stiffness were investigated, and compared with the punching shear test results of the slabs reinforced with conventional steels and GFRP bars. In addition, the strain distribution of flexural reinforcements and crack control were investigated, and the effective width calculating method for the average flexural reinforcement ratio was estimated. The use of high-performance steel reinforcement increased the punching shear strength of slabs, and decreased the amount of flexural reinforcements. The concentrating the top mat of flexural reinforcement increased the post-cracking stiffness, and showed better strain distribution and crack control. In addition, the use of SFRC showed beneficial effects on the punching shear strength and crack control. It was suggest that the effective width should be changed to larger than 2 times the slab thickness from the column faces.