DOI QR코드

DOI QR Code

Study of lubrication and rheological properties of urea grease with respect to PTFE powder addition

PTFE 분말 첨가에 따른 우레아 그리스의 윤활 및 유변학 특성 연구

  • Received : 2019.12.26
  • Accepted : 2020.02.07
  • Published : 2020.02.29

Abstract

In this study, the rheological and tribological properties of urea grease were studied according to the type and amount of polytetrafluoroethylene (PTFE) powders added to the urea grease, which is the most widely used among solid lubricants, to develop an optimal lubrication system. Urea grease was synthesized using 4,4'-methylenebis(phenyl isocyanate)(MDI), oleylamine, and cyclohexylamine, and PTFE powders prepared by dispersion or suspension polymerization process were then added. The basic rheological and tribological properties of the prepared greases were compared. The worked penetration numbers of urea grease decreased with increasing amount of PTFE powders, but both PTFE powders caused no significant changes in heat resistance and copper corrosion resistance. The shear viscosity increased with increasing PTFE powder content, and the dispersion-type PTFE powder was more effective in increasing the viscosity. In the value of the loss coefficient = 1, the shear stress was higher for the grease containing PTFE powders than the non-PTFE added grease, and the dispersion-type PTFE-added grease showed higher viscosity than the suspension-type PTFE-added grease. Finally, urea grease was found to have a low-performance improvement in terms of wear reduction effects by adding PTFE powders, but the load-bearing performance was up to 2.5 times higher for the dispersion-type PTFE and five times higher for the suspension-type PTFE.

본 연구에서는 고체윤활제 중 가장 널리 사용되는 폴리테트라플루오로에틸렌(PTFE) 분말의 종류와 투입량에 따른 우레아 그리스의 윤활 및 유변학 특성 변화를 연구하여 최적의 윤활시스템을 구축하고자 하였다. 4,4'-메틸렌 다이페닐 다이아이소사이아네이트(MDI), 올레일아민과 시클로헥실아민을 사용하여 우레아 그리스를 합성하고, 분산법 혹은 현탁법으로 중합된 PTFE 분말을 함량별로 투입하여 그리스를 제조하였다. 제조된 그리스의 기본물성, 유변학적 및 트라이볼로지 특성을 비교하였다. 그 결과, PTFE의 첨가량에 따라 우레아 그리스의 주도값은 감소하지만 변화폭은 분산형 PTFE가 상대적으로 더 큰 것으로 확인되었다. 내열성과 동판부식 영향성에서는 두 가지 PTFE 분말 모두 큰 변화가 없는 것을 확인하였다. PTFE 분말의 함량 증가에 따라 전단점도는 상승하였으며, 분산형 PTFE가 점도 상승에 더 효과가 있음을 확인하였다. 손실계수의 값이 1인 점에서 전단응력은 PTFE 분말이 첨가되지 않은 그리스 보다 첨가된 그리스가 더 높았고, 분산형 PTFE가 현탁형 PTFE보다 더 큰 것을 확인하였다. 두 가지 PTFE 분말 모두 우레아 그리스의 마모 감소 효과에 대한 성능 향상은 낮았지만, 내 하중 성능은 분산형 PTFE는 최대 2.5배, 현탁형 PTFE는 최대 5배의 증대 효과가 있는 것을 확인하였다.

Keywords

References

  1. H. Czichos, Basic Tribological Parameters, Friction, Lubricant and Wear Technology, ASTM handbook, Vol.18, 474, 1992.
  2. ASTM Standards on Petroleum Products and Lubricants Method D288-61.
  3. K. H. Choung, Lubrication Engineering, KTC pp. 152, 1991.
  4. Delgado M. A., Valencia C., Sanchez M. C., Franco J. M. and Gallefos C., "Influence of soap concentration and oil viscosity on the rheology and microstructure of lubricating grease", Ind. Eng. Chem. Res., Vol.45, pp. 1902-1910, 2006. DOI:http://dx.doi.org/10.1021/ie050826f
  5. Okaniwa T., Kimura H,, "Effects of Various Factors on Properties of Lithium Complex Grease", Kyodo Yushi Co., Ltd., Vol.61, No.3, pp. 18-24, 1996.
  6. R. Adams, John R. Johnson and Charles F. wilcox, "Laboratory Experimets in ORGANIC CHEMISTRY", 7th, pp. 2274, 1979 DOI:https://doi.org/10.1021/ed057pA26
  7. T. Mang, "Lubricants and Lubrication" Wiley-vch, Second, completely Revised and Extended Edition, pp.694, 2007. DOI:https://doi.org/10.1002/9783527610341
  8. H. H. shim, O. K, Kwon, K, H Lee, B, H, Kim, "Effects of Composition Ratio and Temperature on Friction and Wear of PTFE-Polyimide Composites", Tribology and lubricants, Vol.12, No.3, pp. 55-62, 1996. DOI:https://doi.org/10.9725/kstle.1996.12.3.055
  9. Solvey, "Polymist(R) & Algoflon(R) PTFE Micronized Powders", 2016 Solvay Specialty Polymers Technical Bulletin, pp. 9-14, 2016.
  10. KOREA Standards, Lubricating grease, KS M 2130.
  11. ASTM Standards on Petroleum Products and Lubricants Method D2266-11.
  12. ASTM Standards on Petroleum Products and Lubricants Method D2596-15.
  13. DIN Standards on Testing of lubricants Method DIN 51810-1:2017.
  14. DIN Standards on Testing of lubricants Method DIN 51810-2:2017.
  15. Rahimi, S. Natan, B. "Numerical Solution of the Flow of Power-Law Gel Propellants in Converging in Converging Injectors," Propellants, Explosives, Pyrotechnics, Vol.25, pp. 203-212, 2000. DOI:https://doi.org/10.1002/1521-4087(200009)25:4<203::AID-PREP203>3.0.CO;2-E
  16. M.Sugimoto, Y. Suzuki, K. Hyun, K. H. Ahn, T. Ushioda, A. Nishioka, T. Taniguchi, and K. Koyama, "Melt rheology of long-chain-branched polypropylenes", Rheol. Acta, Vol.46, pp. 33, 2006. DOI:https://doi.org/10.1007/s00397-005-0065-z
  17. J. M. Madiedo, J. M. Franco, C. Valencia, M. C. Sanchez, C. Gallegos, J., "Modeling of the nonlinear rheological behavior of lubricating grease at low shear rates." Tribol, Vol.122, pp. 590-596, 2000. DOI:https://doi.org/10.1115/1.555406
  18. T. Mang, "Lubricants and Lubrication" Wiley-vch, Second, completely Revised and Extended Edition, pp. 652, 2007. DOI:https://doi.org/10.1002/9783527610341