• Title/Summary/Keyword: corrosion steel bar

Search Result 142, Processing Time 0.022 seconds

The influence of EAF dust on resistivity of concrete and corrosion of steel bars embedded in concrete

  • Almutlaq, Fahad M.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.163-176
    • /
    • 2014
  • Essentially, when electrical current flows easily in concrete that has large pores filled with highly connective pore water, this is an indication of a low resistivity concrete. In concrete, the flow of current between anodic and cathodic sites on a steel reinforcing bar surface is regulated by the concrete electrical resistance. Therefore, deterioration of any existing reinforced concrete structure due to corrosion of reinforcement steel bar is governed, to some extent, by resistivity of concrete. Resistivity of concrete can be improved by using SCMs and thus increases the concrete electrical resistance and the ability of concrete to resist chloride ingress and/or oxygen penetration resulting in prolonging the onset of corrosion. After depassivation it may slow down the corrosion rate of the steel bar. This indicates the need for further study of the effect of electric arc furnace dust (EAFD) addition on the concrete resistivity. In this study, concrete specimens rather than mortars were cast with different additions of EAFD to verify the electrochemical results obtained and to try to understand the role of EAFD addition in influencing the corrosion behaviour of reinforcing steel bar embedded in concrete and its relation to the resistivity of concrete. The results of these investigations indicated that the corrosion resistance of steel bars embedded in concrete containing EAFD was improved, which may link to the high resistivity found in EAFD-concrete. In this paper, potential measurements, corrosion rates, gravimetric corrosion weight results and resistivity measurements will be presented and their relationships will also be discussed in details.

Corrosion Properties of Reinforced Concrete with Types of Surface Cover and Covering Depth under the Combined Deterioration Environments (복합열화 환경하에서 표면피복종류 및 피복두께에 따른 철근콘크리트의 부식특성)

  • Kim, Moo-Han;Kwon, Young-Jin;Kim, Young-Ro;Kim, Jae-Hwan;Jang, Jong-Ho;Cho, Bong-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.119-126
    • /
    • 2004
  • Generally, reinforced concrete is one of the most commonly used structural materials and it prevents corrosion of steel bar by high pH of interior, But, as time elapsed, reinforced concrete structure become deteriorated by many of combined deterioration factors and environmental conditions. And, there are large number of deteriorate mechanism of the reinforced concrete structure and it acts complexly. It is recognized that steel bar corrosion is the main distress behind the present concern regarding concrete durability. In this study, to institute combined deterioration environments, established acceleration condition and cycle for combined deterioration environments has a resemblance to environments which are real structures placed. After that to confirm corrosion properties of reinforced concrete due to permeability with covering depth and types of surface cover under combined deterioration environments, measured carbonation velocity coefficients, chloride ion diffusion coefficients, water absorption coefficients, air permeability coefficients and electric potential, corrosion area ratio, weight reduction, corrosion velocity of steel bar. The results showed that an increase in age also decrease carbonation velocity coefficients, increase Chloride ion diffusion coefficients and increases water absorption coefficients. As well, an increase in age also increases corrosion of steel bar. Data on the development of corrosion velocity of steel bar with types of surface cover made with none, organic B, organic A, inorganic B, and inorganic A is shown. As well, permeability and corrosion velocity of steel bar with covering depth is superior to 10mm than 20mm. And it is confirmed permeability and corrosion properties of steel bar are closely related.

An experimental study on corrosion properties of reinforcing steel under environment of complex deterioration (표면피복종류에 따른 복합열화환경하의 철근콘크리트 부식특성에 관한 실험적 연구)

  • 조봉석;김영덕;윤종기;김재환;김용로;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.86-89
    • /
    • 2003
  • It is recognized that reinforcement corrosion is the main distress behind the present concern regarding concrete durability. In this study, to confirm corrosion of reinforced concrete affected by thickness of cover, kinds of surface coating, measured electric potential, ratio of corrosion area, weight reduction, corrosion velocity of steel bar under environment of complex deterioration. The results showed that an increase in age also increases corrosion of steel bar. Ratio of corrosion area is largely related to ratio of weight reduction. as well, corrosion of steel bar by thickness of cover is superior to l0mm thick than 20mm thick. It showed that an increase in thickness of cover prevent steel bar from deteriorating. The results of this study showed that corrosion velocity was affected by thickness of cover, kinds of surface coating. data on the development of corrosion velocity made with none, organic B, organic A, inorganic B, and inorganic A is shown.

  • PDF

Bond Stress of the Bar Removed Rust with Concrete (전식녹을 제거한 철근과 콘크리트의 부착응력에 관한 실험적 연구)

  • Choi, Hyo-Seok;Lee, Joo-Il;Ryu, Soo-Hyun;Yu, Ho-Hyun;Kim, Jin-Mu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.188-194
    • /
    • 2001
  • A reinforced concrete structure is complex structure that works as one body with bonding role of steel bar and concrete. The bonding action between steel bar and concrete makes possible the compound structure. The transmission of mutual strength of the steel bar with concrete in structure is determined by the bonding characteristic of steel bar and concrete surface. But the efficiency of bonding characteristic of steel bar is Questionable by the corrosion cause by the delay construction term, the wrong management, etc. So this study investigate bonding characteristic of reinforced concrete using pull-out test method which steel bar removed rust and the principal variables of this study are concrete compression strength and the degree of corrosion. The result showed that bonding strength tend to increase when removed rust of steel bar whereas it tend to decrease when not removed rust.

  • PDF

Evaluation of Load Capacity Reduction in RC Beam with Corroded FRP Hybrid Bar and Steel (철근부식을 고려한 FRP Hybrid Bar 및 일반 철근을 가진 RC 보의 내력저하 평가)

  • Oh, Kyung-Suk;Moon, Jin-Man;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.10-17
    • /
    • 2016
  • Steel corrosion is a very significant problem both to durability and structural safety since reinforcement has to support loads in tensile region in RC(Reinforced Concrete) member. In the paper, newly invented FRP Hybrid Bar and normal steel are embedded in RC beam member, and ICM (Impressed Current Method) is adopted for corrosion acceleration. Utilizing the previous theory of Faraday's Law, corrosion amount is calculated and flexural tests are performed for RC beam with FRP Hybrid Bar and steel, respectively. Corrosion amount level of 4.9~7.8% is measured in normal RC member and the related reduction of flexural capacity is measured to be -25.4~-50.8%, however there are no significant reduction of flexural capacity and corrosion initiation in RC samples with FRP Hybrid Bar due to high resistance of epoxy-coated steel to corrosion initiation. In the accelerated corrosion test, excellent performance of anti-corrosion and bonding with concrete are evaluated but durability evaluation through long-term submerged test is required for actual utilization.

Prediction of steel corrosion in magnesium cement concrete based on two dimensional Copula function

  • Feng, Qiong;Qiao, Hongxia;Wang, Penghui;Gong, Wei
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.181-187
    • /
    • 2018
  • In order to solve the life prediction problem of damaged coating steel bar in magnesium cement concrete, this study tries to establish the marginal distribution function by using the corrosion current density as a single degradation factor. Representing the degree of steel corrosion, the corrosion current density were tested in electrochemical workstation. Then based on the Copula function, the joint distribution function of the damaged coating was established. Therefore, it is indicated that the corrosion current density of the bare steel and coated steel bar can be used as the boundary element to establish the marginal distribution function. By using the Frank-Copula function of Copula Archimedean function family, the joint distribution function of the damaged coating steel bar was successfully established. Finally, the life of the damaged coating steel bar has been lost in 7320d. As a new method for the corrosion of steel bar under the multi-dimensional factors, the two-dimensional Copula function has certain practical significance by putting forward some new ideas.

Galvanic Sensor System for Detecting the Corrosion Damage of the Steel in Concrete

  • Kim, Jung-Gu;Park, Zin-Taek;Yoo, Ji-Hong;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.118-126
    • /
    • 2004
  • The correlation between sensor output and corrosion rate of reinforcing steel was evaluated by laboratory electrochemical tests in saturated $Ca(OH)_2$ with 3.5 wt.% NaCl and confirmed in concrete environment. In this paper, two types of electrochemical probes were developed: galvanic cells containing of steel/copper and steel/stainless steel couples. Potentiodynamic test, weight loss measurement, monitoring of open-circuit potential, linear polarization resistance (LPR) measurement and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of steel bar embedded in concrete. Also, galvanic current measurements were conducted to obtain the charge of sensor embedded in concrete. In this study, steel/copper and steel/stainless steel sensors showed a good correlation in simulated concrete solution between sensor output and corrosion rate of steel bar. However, there was no linear relationship between steel/stainless steel sensor output and corrosion rate of steel bar in concrete environment due to the low galvanic current output. Thus, steel/copper sensor is a reliable corrosion monitoring sensor system which can detect corrosion rate of reinforcing steel in concrete structures.

Evaluation on Steel Bar Corrosion Embedded in Antiwashout Underwater Concrete

  • Moon Han-Young;Shin Kook-Jae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.303-309
    • /
    • 2005
  • This study aims the evaluation of the corrosion of steel bar embedded in antiwashout underwater concrete, which has rather been neglected to date. To that goal, accelerated steel bar corrosion tests have been performed on three series of steel bar-reinforced antiwashout underwater concrete specimens manufactured with different admixtures. The three series of antiwashout underwater concrete were: concrete constituted exclusively with ordinary portland cement (OPC), concrete composed of ordinary portland cement mixed with fly-ash in $20\%$ ratio (FA20), and concrete with ground granulated blast furnace slag mixed in $50\%$ ratio (BFS50). The environment of manufacture was in artificial seawater. Measurement results using half-cell potential surveyor showed that, among all the specimens, steel bar in OPC was the first one that exceeded the threshold value proposed by ASTM C 876 with a potential value below -350mv after 14 cycles. And, the corresponding corrosion current density and concentration of water soluble chloride were measured as $30{\mu}A/mm^2$ and $0.258\%$. On the other hand, for the other specimens that are FA20 and BFS50, potential values below -350mV were observed later at 18 and 20 cycles, respectively. Results confirmed the hypothesis that mineral admixtures may be more effective on delay the development of steel bar corrosion in antiwashout underwater concrete.

Characteristics of Flexural Capacity and Ultrasonic in RC member with Corroded Steel and FRP Hybrid Bar (부식된 FRP Hybrid Bar의 휨 내력 및 초음파 속도 특성)

  • Choi, Se-Jin;Mun, Jin-Man;Park, Ki-Tae;Park, Cheol-Woo;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.8
    • /
    • pp.397-407
    • /
    • 2015
  • Concrete is a attractive construction material, however durability problem occur due to steel corrosion, which leads propagation to structural safety problem. The recently developed FRP (Fiber Reinforced Plastic) Hybrid Bar has an engineering merit of both structural steel and FRP. Accelerated corrosion test for RC (Reinforced Concrete) samples with normal steel and FRP Hybriud Bar are performed and their flexural capacity is evaluated. Furthermore UV(Ultrasonic Velocity) measurement is attempted for analysis of variation of UV due to corrosion condition. After corrosion test, there is no significant reduction in RC beam with FRP hybrid bar but 11.5% of reduction in the case of normal steel is evaluated with 3.3% of UV reduction. For commercial production of FRP hybrid bar, bond strength evaluation through long-term submerged corrosion is required.

Bond Strength and Corrosion Resistance of Coated Reinforcing Bar Using Hybrid-Type Polymer Cement Slurry (Hybrid형 폴리머 시멘트 슬러리로 도장한 철근의 부착강도와 부식저항성)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.3
    • /
    • pp.93-99
    • /
    • 2008
  • The purpose of this study is to evaluate the bond strength and corrosion resistance of coated reinforcing bar using hybrid-type polymer cement slurry(PCS). PCS coated steels, which is made from two types of polymer dispersions such as St/BA and EVA are prepared, and tested for bond strength and various corrosion resistances such as autoclaved cure, carbonation and H2SO4 solution. From the test results, the bond strength of PCS coated reinforcing bar using ordinary portland cement at 1-5, 2-1 and 4-5 of mixes is higher than that of uncoated regular steel. However, bond strength of almost PCS coated reinforcing bars using ultra rapid high strength cement is higher than that of epoxy coated bar, is also in ranges of 102% to 123% compared to that of uncoated regular steel. In autoclaved accelerating test, the ratio of corrosion of uncoated regular steel is increased with the increase in NaCl content, but the corrosion of PCS coated steel was very small. In the acceleration test for carbonation, increasing the amount of NaCl the corrosion of coated steel did not produce. The corrosion of uncoated regular steel is increased with the increase in the amount of NaCl. It can be seen that the NaCl following the acceleration test for carbonation can lower the corrosion resistance of concrete. As a result, the corrosion of steel largely is affected by the acceleration curing, chloride ion penetration and carbonation and shown more severe corrosion by applying complex factors. These corrosions of steel can be suppressed by the coating of PCS.