• Title/Summary/Keyword: corrosion current

검색결과 1,103건 처리시간 0.028초

전기화학적 방법을 이용한 Ti(Grade 2)재의 최적 어닐링 열처리에 대한 연구 (A Study of Annealing Heat-treatment for Ti(Grade 2) by Electrochemical Methods)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.90-98
    • /
    • 2002
  • In this paper, the annealing heat treatments for the best corrosion resistant of Ti(Grade 2) were studied in a 3.5% NaCl solution by electrochemical methods. The annealing heat treatments were accomplished at 650, 700 and $750^{\circ}C$ with different time of 30min., 1hour and 2 hours in a vacuum condition. The obtained results are: 1) in the case of solution heat treated $930^{\circ}C$ for 2 hours in a vacuum and air, the corrosion potentials were -348.7 and -567. 1mV, and current densities 2.32 and $22.62\mu\textrm{A}$, respectively, 2) as increase both annealing heat treatment temperature 650, 700, $750^{\circ}C$ and time 30min., 1 hour, 2 hours, the corrosion potential were decreased, whereas corrosion current density increased, 3) in the case of cyclic polarization, the measured charges were increased as increasing solution heat treatment temperature and time, 4) on the bases of corrosion potential, current density and charge, the best annealing temperature and time were measured as $700^{\circ}C$ and 30min. for Ti(Grade 2) material.

펄스 와전류(Pulsed eddy current)를 이용한 도시철도차량의 Under Frame Side Sill 부식 평가 (Inspection of corrosion in under frame side sill for rolling stocks using pulsed eddy current testing)

  • 김웅지;송성진;김학준;정종덕;이찬우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1117-1124
    • /
    • 2009
  • Under frame side sill of rolling stock structure is designed for preventing corrosion in order to meet mechanical requirements. However during long operation time more than 20 years, there are corrosion in the under frame side sill caused by environmental effect, vibration and etc. So, detection and evaluation of the corrosion ill the under frame nondestructive is one of important issues to extend their life time. Most of nondestructive methods are not easy to apply for detecting corrosion in the under frame side sill, since the under frame side sill consist of there layered with different material (stainless steel - stainless steel - mild steel) and each layer is connected by spot weld and plug weld. Fortunately, pulsed eddy current method claimed that it can be measured not only thickness change but also corrosion under their insulation layers. So, in this study, we have investigated performance of pulsed eddy current testing method by measuring thickness variation of fabricate of mock-up specimens. The investigation results obtained from mock-up specimens and the corrosion evaluation results of the aged rolling stocks will be presented.

  • PDF

Corrosion Behavior of Stainless Steel 304, Titanium, Nickel and Aluminium in Non-Aqueous Electrolytes

  • Dilasari, Bonita;Park, Jesik;Kusumah, Priyandi;Kwon, Kyungjung;Lee, Churl Kyoung
    • 전기화학회지
    • /
    • 제17권1호
    • /
    • pp.26-29
    • /
    • 2014
  • The corrosion behavior of stainless steel 304 (SS 304), titanium, nickel and aluminium is studied by immersion and anodic polarization tests in non-aqueous electrolytes. Tetraethyl ammonium tetrafluoroborate is used as a supporting electrolyte in the three kinds of solvents. The immersion test shows that chemical corrosion rate in propylene carbonate-based electrolyte is lower than those in acetonitrile- or ${\gamma}$-butyrolactone-based electrolytes. Surface analyses do not reveal any corrosion product formed after the immersion test. In the anodic polarization tests, a higher concentration of supporting electrolyte gives a higher current density. In addition, a higher temperature increases the current density in the active region and reduces the potential range in the passive region. SS 304 shows the highest corrosion potential while Al shows the lowest corrosion potential and the highest current density in all studied conditions. Based on the conducted corrosion tests, the corrosion resistance of metal substrates in the organic solvents can be sorted in descending order as follows: SS 304 - Ti - Ni - Al.

임플랜트 고정체와 지대나사간의 부식특성에 관한 연구 (CORROSION CHARACTERISTICS BETWEEN IMPLANT FIXTURE AND ABUTMENT SCREW)

  • 기수진;권혁신;최한철
    • 대한치과보철학회지
    • /
    • 제38권1호
    • /
    • pp.85-97
    • /
    • 2000
  • The purpose of this study was to compare the corrosion characteristics between implant fixture and two types of abutment screw ; gold screw, titanium screw. The anodic polarization behavior, the galvanic corrosion behavior, and the crevice corrosion behavior of prepared samples were investigated using potentiostat and scanning electron microscope. The results were as follows: 1. Anodic polarization behavior of samples; The primary passivation potential of implant fixture was -420mV, implant abutment was -560mV. titanium screw was -370mV and gold screw was -230mV. All samples were shown to have a high corrosion potential and good formation of passive film. The critical passive current density of gold screw was higher than that of other samples and the sample of gold screw showed a unstable passive film formation at passive region. 2. Galvanic corrosion behavior of samples; Contact current density between implant fixture and titanium screw showed $8.023{\times}10^{-5}C/cm^2$. Contact current density between implant fixture and gold screw showed $5.142{\times}10^{-5}C/cm^2$. 3. Crevice corrosion behavior of samples; The crevice corrosion resistance of sample using titanium screw was higher than that of sample using gold screw, and a severe corrosion morphologies were observed at the fixture-screw interface by the scanning electron microscope.

  • PDF

해양환경 중에서 Glass Flake 라이닝 강재의 부식과 캐비테이션 침식 방지에 관한 연구 (Study on the Corrosion and Cavitation Erosion Control of Glass Flake Lining for Mild Steel in Marine Environment)

  • 임우조;김성훈
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.359-365
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of $Cl^-$. Generally, to protect these accidents, mainly applied anti-corrosion paint and epoxy coating. But it was still remained erosion-corrosion damage such as impingement erosion, cavitation erosion, deposit attack. There was needs to develope the new coating materials to protective those corrosion damages. This paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS were investigated electrochemical tests and cavitation erosion test for corrosion behaviour under sea water. The main results obtained are as follows, 1) Surface of epoxy coating appear erosion pin hole but surface of polyester glass flake and vinylester glass flake lining do not appear erosion pin hole after impingement-cavitation erosion test in sea water. 2) Weight loss of polyester glass flake and vinylester glass flake lining do not occur after impingement-cavitation erosion test in sea water. 3) Corrosion current density of polyester glass flake lining less drained than epoxy coating and substrate under corrosion potential.. 4) Corrosion current density of vinylester glass flake lining with three coating less drained than that of polyester glass flake lining with two coating.

  • PDF

염소이온 함유된 용액에서 Ti합금의 부식특성에 미치는 Hafnium함량의 영향 (Effects of Hafnium Addition on the Pitting Corrosion Behavior of Ti Alloys in Electrolyte Containing Chloride Ion)

  • 김성환;최한철
    • Corrosion Science and Technology
    • /
    • 제11권5호
    • /
    • pp.191-195
    • /
    • 2012
  • The aim of this study was to investigate effects of hafnium content on the corrosion behavior of Ti alloys in electrolyte containing chloride ion. For this study, Ti-Hf binary alloys contained 10 wt%, 20 wt% and 30 wt% Hf were manufactured in a vacuum arc-melting furnace and subjected to heat treatment for 12h at $1000^{\circ}C$ in an argon atmosphere. The pitting corrosion behavior of the specimens was examined through potentiodynamic and potentiostatic tests in 0.9 wt% NaCl electrolyte at $36.5{\pm}1^{\circ}C$. The corrosion morphology of Ti-xHf alloys was investigated using optical microscopy (OM) and X-ray diffractometer (XRD). From the optical microstructures and XRD results, needle-like martensite ($\alpha$') phases of the Ti-xHf alloys increased with an increase of Hf addition. Corrosion current density $(I_{corr})$ and current density $(I_{300mV})$ in passive region decreased, whereas, corrosion potential increased with Hf content. At the constant potential ($300mV_{SCE}$), current density decreased as time increased.

해양구조물 RE36강의 용접부 부식거동 및 SSRT법에 의한 기계적 특성에 관한 연구 (A Study on the Corrosion Rehavior and Mechanical Property by SSRTTest of Welding Part of RE36 Steel for Marine Structure)

  • 김종성;김진경;김종호;이명훈;김영식;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권4호
    • /
    • pp.460-469
    • /
    • 2000
  • A study on the corrosion behavior of RE36 steel for marine structure was investigated with parameters such as micro-Vickers hardness, corrosion potential and corrosion current density measurement of weld metal(WM), base metal (BM) and heat affected zone(HAZ), Al anode generating current and Al anode weight loss quantity in case of cathodic protection. And we carried out slow strain rate test(SSRT) in order to research mechanical properties such as stress at maximum load, percent strain, time to fracture and strain to failure ratio etc and to find out limiting cathodic polarization potential for hydrogen embrittlement with applied cathodic polarization potential. Hardness of HAZ part was the highest among those three parts and also galvanic corrosion susceptibility was the highest in HAZ part among those three parts due to the lowest corrosion potential than other parts. However corrosion current density was the highest in WM part among those three parts. And the optimum cathodic polarization potential showing the best mechanical properties obtained by SSRT method with applied constant cathodic potential was from - 770mV to - 875mV(SCE). However it is suggested that limiting cathodic polarization potential indicating hydrogen embrittlement on the mechanical properties was under - 900mV(SCE).

  • PDF

확산한계전류밀도 고찰에 의한 방청도료의 내식성평가 (Evaluation of Corrosion Resistance of Anti-Corrosive Paint by Investigation of Diffusion Limiting Current Density)

  • 문경만;김윤해;이명훈;이인원;박현;전호환
    • 한국해양공학회지
    • /
    • 제23권4호
    • /
    • pp.64-68
    • /
    • 2009
  • It has been observed that coated steel structures deteriorate more rapidly than the designed lifetime due to acid rain caused by air pollution, etc. Therefore, improving the corrosion resistance of anti-corrosive paint is very important in terms of safety and the economic point of view. In this study, the corrosion resistance of five kinds of anti-corrosive paints, including the Acryl, Fluorine, and Epoxy resin series, were investigated with electrochemical methods, such as corrosion potential measurements, polarization curves, diffusion limiting current density, etc. As a result, the corrosion resistance of the F101 specimen with the fluorine resin series was found to be superior to the other specimens, while E100 with the epoxy resin series also showed a somewhat good corrosion resistance. Furthermore, it was observed that the amount of water and oxygen entering the inner side of a painted film increased with an increase in immersion time, irrespective of the kind of resin series. However, the oxygen diffusion limiting current density of a specimen with good corrosion resistance was relatively decreased compared to other specimens, because of the difficulty of oxygen diffusion penetrating to the inner side of the film. Consequently it is suggested that we can qualitatively evaluate the corrosion resistance of an anti-corrosive paint by measuring the diffusion limiting current density as an electrochemical method.

염해에 따라 콘크리트 속에서 부식된 철근의 반전지전위와 부식전류밀도의 상관관계에 관한 실험적 연구 (An Experimental Study on Relationship Between Half-Cell Potential and Corrosion Current Density of Chloride-Induced Corroded Steel in Concrete)

  • 조상현;김동원;기성훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권6호
    • /
    • pp.1-13
    • /
    • 2022
  • 이 연구에서는 콘크리트 표면에서 측정된 반전지전위(half-cell potential, HCP)값을 활용하여 철근 부식 상태 및 부식속도의 정량적 평가 가능성을 논의하였다. 이 연구에서는 염수에 침지된 콘크리트 속 철근에 전류를 인가하여 다양한 부식상태의 철근 콘크리트 실험체(한 변의 길이가 200mm 인 정육면체)를 준비하였다. 부식촉진시험을 마치고, 염수 포화상태의 콘크리트 실험체 표면에서 HCP값을 측정하였고, 바로 이어서 동일한 조건의 실험체에서 전기화학적 임피던스 분광법을 활용하여 콘크리트 속 철근의 분극저항값을 측정하였다. 측정된 분극저항값을 Stern-Geary식에 대입하여 부식전류밀도(corrosion current density, icorr)를 계산하였다. 실험결과를 바탕으로 염해에 따라 다양한 부식상태의 철근이 매입된 철근 콘크리트 실험체의 염수 포화상태에서 HCP와 icorr의 상관관계를 도출하였다. 대체적으로 HCP와 icorr은 로그선형관계를 보였으며, R2값이 0.87이상의 높은 적합도를 확인하여 통계적인 유의함을 확인하였다. 이러한 결과는 일정한 환경에 노출된 철근 콘크리트일 경우 자연전위값을 측정함으로서 철근의 부식상태 및 속도를 평가할 수 있음을 실험적으로 확인하였다.

해양 금속재료의 부식속도와 방식전류에 미치는 유속의 영향 (Effect of flow velocity on corrosion rate and corrosion protection current of marine material)

  • 이승준;한민수;장석기;김성종
    • Corrosion Science and Technology
    • /
    • 제14권5호
    • /
    • pp.226-231
    • /
    • 2015
  • In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.