DOI QR코드

DOI QR Code

An Experimental Study on Relationship Between Half-Cell Potential and Corrosion Current Density of Chloride-Induced Corroded Steel in Concrete

염해에 따라 콘크리트 속에서 부식된 철근의 반전지전위와 부식전류밀도의 상관관계에 관한 실험적 연구

  • 조상현 (동아대학교 ICT 융합 해양스마트시티 공학과) ;
  • 김동원 (동아대학교 ICT 융합 해양스마트시티 공학과) ;
  • 기성훈 (동아대학교 ICT 융합 해양스마트시티 공학과)
  • Received : 2022.05.21
  • Accepted : 2022.11.03
  • Published : 2022.12.31

Abstract

This study aims to investigate the feasibility of the half-cell potential (HCP) measurements on the concrete surface for evaluation of corrosion rate (or corrosion levels) of reinforcing steel in concrete. A series of experimental study is performed to measure HCP (or corrosion potential, Ecorr) and corrosion current density (icorr) of reinforcing steel in concrete cube specimens, with a side length of 200 mm. Various corrosion levels in a range of 0% to 20% of the test specimens are accelerated by impressing current to the reinforcing steel in concrete immersed in 3.0 % NaCl solution. HCP is measured in accordance with ASTM C876-15, and corrosion current density is determined by using the Stern-Geary equation and measured polarization resistance measured by electrochemical impedance spectroscopy (EIS). As a result, a numerical formula that relates HCP and icorr in the test specimen is established by a regression analysis of the measured data in this study. It is observed that HCP is linearly correlated with log(icorr) with a R2 greater than 0.87, which is less affected by the experimental variables such as concrete mixture proportion, diameter of reinforcing steel and the amount of applied current in this study. These results exhibit that HCP measurements could be effective for evaluation of corrosion rate (or corrosion levels) of reinforcing steel in concrete in the case of exposed to a certain consistent environment.

이 연구에서는 콘크리트 표면에서 측정된 반전지전위(half-cell potential, HCP)값을 활용하여 철근 부식 상태 및 부식속도의 정량적 평가 가능성을 논의하였다. 이 연구에서는 염수에 침지된 콘크리트 속 철근에 전류를 인가하여 다양한 부식상태의 철근 콘크리트 실험체(한 변의 길이가 200mm 인 정육면체)를 준비하였다. 부식촉진시험을 마치고, 염수 포화상태의 콘크리트 실험체 표면에서 HCP값을 측정하였고, 바로 이어서 동일한 조건의 실험체에서 전기화학적 임피던스 분광법을 활용하여 콘크리트 속 철근의 분극저항값을 측정하였다. 측정된 분극저항값을 Stern-Geary식에 대입하여 부식전류밀도(corrosion current density, icorr)를 계산하였다. 실험결과를 바탕으로 염해에 따라 다양한 부식상태의 철근이 매입된 철근 콘크리트 실험체의 염수 포화상태에서 HCP와 icorr의 상관관계를 도출하였다. 대체적으로 HCP와 icorr은 로그선형관계를 보였으며, R2값이 0.87이상의 높은 적합도를 확인하여 통계적인 유의함을 확인하였다. 이러한 결과는 일정한 환경에 노출된 철근 콘크리트일 경우 자연전위값을 측정함으로서 철근의 부식상태 및 속도를 평가할 수 있음을 실험적으로 확인하였다.

Keywords

Acknowledgement

이 연구는 국토교통부 재원으로 국토교통과학기술진흥원의 건설교통기술 촉진연구과제의 지원으로 수행된 연구입니다 (Grant 21CTAP-C163815-01).

References

  1. ASTM C876-15 (2015), Standard test method for half-cell potentials of uncoated reinforcing steel in concrete, ASTM International, West Conshohocken, PA, USA.
  2. ASTM G1-03 (2003), Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM International, West Conshohocken, PA, USA.
  3. Adriman, R., Ibrahim, I.B.M., Huzni, S., Fonna, S., Ariffin, A.K. (2022), Improving half-cell potential survey through computational inverse analysis for quantitative corrosion profiling, Case Studies in Construction Materials, 16. https://doi.org/10.1016/j.cscm.2021.e00854.
  4. Bird, H.E.H., Pearson, B.R., and Brook, P.A. (1988), The breakdown of passive films on iron, Corrosion Science, 28(1), 81-86. https://doi.org/10.1016/0010-938X(88)90009-1
  5. Bungey, J., and S. Millard, S. (1996), Testing of Concrete in Structures, Chapman & Hall, Glasgow, UK.
  6. Chung, L., Kim, J.H., and Yi, S.T. (2008), Bond Strength Prediction for Reinforced Concrete Members with Highly Corroded Reinforcing Bars, Cement and Concrete Composites, 30(7), 603-611. https://doi.org/10.1016/j.cemconcomp.2008.03.006
  7. Daniyal, Md and Akhtar, S. (2020), Corrosion assessment and control techniques for reinforced concrete structures: A review, Journal of Building Pathology and Rehabilitation, 5(1).
  8. Dhir, R.K., Jones, M.R.., and McCarthy, M.J. (1993), Quantifying chloride-induced corrosion from half-cell potential, Cement and Concrete Research, 23(8), 1443-1454. https://doi.org/10.1016/0008-8846(93)90081-J
  9. Elsener, B., Andrade, C., Gulikers, J., Polder, R., and Raupach, M. (2003), Half-cell potential measurements-potential mapping on reinforced concrete structures, Materials and Structures, 36, 261, 461-471.
  10. Ghods, P., Isgor, O.B., Pour-Ghaz, M. (2007), A practical method for calculating the corrosion rate of uniformly depassivated reinforcing bars in concrete, Materials and Corrosion, 58(4), 265-272. https://doi.org/10.1002/maco.200604010
  11. Gucunski, N., Imani, A., Romero, F., Nazarian, S., Yuan, D., Wiggenhauser, H., Shokouhi, P., and Taffe, A. (2013). Nondestructive testing to identify concrete bridge deck deterioration (S2-R06A-RR-1). SHRP 2 Report, Transportation Research Board (TRB), Washington, D.C., USA.
  12. Jeong, G.C., and Kwon, S.-J. (2021), Relationship between corrosion in reinforcement and influencing factors using half cell potential under saturated condition, Journal of the Korean Recycled Construction Resources Institute, 9(2), 191-199. https://doi.org/10.14190/JRCR.2021.9.2.191
  13. Jones, D.A. (1996), Principles and Prevention of Corrosion 2nd edition, Prentice Hall, NJ, USA, 75-115.
  14. Kim, J.-K, Kee, S.-H., and Yee, J.-J. (2018), Corrosion monitoring of reinforcing bars in cement mortar exposed to seawater immersion-and-dry cycles, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(4), 10-18. https://doi.org/10.11112/JKSMI.2018.22.4.010
  15. Kim, J.-K., Kee, S.-H., Futalan, C.M., and Yee, J.-J. (2020), Corrosion monitoring of reinforced steel embedded in cement mortar under wet-and-dry cycles by electrochemical impedance spectroscopy, Sensors, 20(1), 199, https://doi.org/10.3390/s20010199.
  16. Kim, Y.Y., Kim, J.M., Bang, J.-W., and Kwon, S.-J. (2014), Effect of cover depth, w/c ratio, and crack width on half cell potential in cracked concrete exposed to slat sprayed condition, Construction and Building Materials, 54, 636-645. https://doi.org/10.1016/j.conbuildmat.2014.01.009
  17. Li. C., Chen, Q., Wang, R., Wu, M., and Jiang, Z. (2020), Corrosion assessment of reinforced concrete structures exposed to chloride environments in underground tunnels: Theoretical insights and practical data interpretations, Cement and Concrete Composites, 112, 103652. https://doi.org/10.1016/j.cemconcomp.2020.103652
  18. Macdonald, D.D. (2006), Reflections on the history of electrochemical impedance spectroscopy, Electrochimica Acta, 51(8-9), 1376-1388. https://doi.org/10.1016/j.electacta.2005.02.107
  19. Maruya, T., Takeda, H., Horiguchi, K., Koyama, S., and Hsu, K.-L. (2007), Simulation of steel corrosion in concrete based on the model of macro-cell corrosion circuit, Journal of Advanced Concrete Technology, 5(3), 343-362. https://doi.org/10.3151/jact.5.343
  20. Mehta, P.K. and Monteriro, P.J.M. (2013), Concrete: Microstructure, Properties, and Materials 4th Edition, McGraw Hill, 113-187.
  21. Neville, A.M. (2011), Properties of Concrete 5th edition, Prentice Hall, pp.483-538.
  22. Pacheco-Torgal, F. (2018), Introduction. In Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures; Elsevier: Amsterdam, The Netherlands, 1-12.
  23. Pour-Ghaz, M., Isgor, O.B., and Ghods, P. (2009), Quantitiative interpretation of half-cell potential measurements in concrete structures, Journal of Materials in Civil Engineering-ASCE, 21(9), 467-475. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:9(467)
  24. Qian, S., Zhang, J., and Qu, D. (2006), Theoretical and experimental study of microcell and macrocell corrosion in patch repairs of concrete structures, Cement and Concrete Composites, 28(8), 685-695. https://doi.org/10.1016/j.cemconcomp.2006.05.010
  25. Ribeiro, D.V., and Abrantes, J.C.C. (2016), Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach, Construction and Building Materials, 111, 98-104. https://doi.org/10.1016/j.conbuildmat.2016.02.047
  26. Robles, K.P.V., Yee, J.-J., and Kee, S.-H. (2022), Electrical resistivity measurements for nondestructive evaluation of chloride-induced deterioration of reinforced concrete-A review, Materials, 15(2725). https://doi.org/10.3390/ma15082725.
  27. Ryu, H.-W, Park, Ja.-S. and Kwon, S.-J. (2017), Relationship between half cell potential and corrosion amount considering saturated cover depth and W/C ratios in cement mortar, Journal of the Korea Institute for Structural Maintenance and Inspection, 21(3), 19-26. https://doi.org/10.11112/JKSMI.2017.21.3.019
  28. Stern, M., and Geary, A.L. (1957), Electrochemical Polarization: I. a theoretical analysis of the shape of polarization curves, Journal of The Electrochemical Society, 104(1), 56-63. https://doi.org/10.1149/1.2428496
  29. Tan, Y., Yu, H., and Wu, C. (2020), Investigation on the Corrosion Behavior of Steel Embedded in Basic Magnesium Sulfate Cement Concrete: An Attempt and Challenges, ACS Omega, 5, 27846-27856. https://doi.org/10.1021/acsomega.0c02882
  30. Zou, Z.H., Wu, J., Wang, Z., and Wang. Z. (2016), Relationship between half-cell potential and corrosion level of rebar in concrete, Corrosion Engineering, Science and Technology, 51(8), 588-595. https://doi.org/10.1080/1478422X.2016.1167304