• Title/Summary/Keyword: corrosion area

Search Result 571, Processing Time 0.025 seconds

Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation

  • Qi, Jianan;Wang, Jingquan;Li, Ming;Chen, Leilei
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.79-92
    • /
    • 2017
  • Initial damage to a stud due to corrosion, fatigue, unexpected overloading, a weld defect or other factors could degrade the shear capacity of the stud. Based on typical push-out tests, a FEM model and theoretical formulations were proposed in this study. Six specimens with the same geometric dimensions were tested to investigate the effect of the damage degree and location on the static behavior and shear capacity of stud shear connectors. The test results indicated that a reduction of up to 36.6% and 62.9% of the section area of the shank could result in a dropping rate of 7.9% and 57.2%, respectively, compared to the standard specimen shear capacity. Numerical analysis was performed to simulate the push-out test and validated against test results. A parametrical study was performed to further investigate the damage degree and location on the shear capacity of studs based on the proposed numerical model. It was demonstrated that the shear capacity was not sensitive to the damage degree when the damage section was located at 0.5d, where d is the shank diameter, from the stud root, even if the stud had a significant reduction in area. Finally, a theoretical formula with a reduction factor K was proposed to consider the reduction of the shear capacity due to the presence of initial damage. Calculating K was accomplished in two ways: a linear relationship and a square relationship with the damage degree corresponding to the shear capacity dominated by the section area and the nominal diameter of the damaged stud. This coefficient was applied using Eurocode 4, AASHTO LRFD (2014) and GB50017-2003 (2003) and compared with the test results found in the literature. It was found that the proposed method produced good predictions of the shear capacity of stud shear connectors with initial damage.

A Study on Survey of Carbonation for Sound, Cracked, and Joint Concrete in RC Column in Metropolitan City (국내 도심지 콘크리트 교각 취약부의 탄산화 조사에 대한 연구)

  • Kwon, Seung Jun;Park, Sang Sun;Nam, Sang Hyuk;Cho, Ho Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.116-122
    • /
    • 2007
  • The concrete structures in Metropolitan city are usually exposed to carbonation and corrosion of embedded steel occurs due to the carbonation. In inspection and diagnosis of concrete structures, carbonation depth in sound concrete is mainly evaluated and service life for concrete structure is predicted based on the result. Generally, however, mass concrete structures such as columns have construction joint for suitable placing and also have cracks in early-age. In this study, carbonation depth in RC columns used for 20 years in metropolitan city is evaluated and also analyzed by considering the local conditions like sound, cracked, and joint area. The carbonation depth in cracked and joint area is more rapid than that in sound area, and it is thought to be more desirable to consider this effect in concrete structures with small cover depth. Furthermore, the technique for carbonation prediction in cracked concrete is derived in terms of crack width and the results from this technique are verified by comparing those from previous research.

Technical Application and Analysis for Reduction of Water Loss in Water Distribution Systems (상수도 관망의 유수율 제고 기술의 적용 및 분석)

  • Kim, Ju-Hwan;Lee, Doo-Jin;Bae, Cheol-Ho;Woo, Hyung-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.260-266
    • /
    • 2009
  • Non-revenue water reduction(NRW) technologies are implemented to evaluate and manage leakages scientifically in water distribution systems under local governments. A development of quantitative leakage indicator by measuring minimum night flow, pressure control policy by installation of PRV(pressure reducing valve) and the establishment of leakage prevention schemes by residual life modeling of deteriorated water pipes are reviewed and studied. Estimation models of allowable leakage are developed by measuring and analyzing minimum night flow at residential and commercial area in Nonsan city, which is suggested from UK water industry and can improve an existing leakage indicator for the evaluation of non-revenue water. Also, pressure control method is applied and analyzed to Uti distribution area in Sacheon city in the operation aspect. As results, $466\;m^3/day$ of leakage can be reduced and it is expected that 113million won of annual cost can be saved. In the part of corrosion velocity and residual life assessment, non-linear prediction models of residual thickness are proposed by assessment of corrosion velocity based on exposure years, soil and water quality etc., since the deteriorated water pipe play a major role to increase leakage. It is expected that collection data and analyzing results can be applied effectively and positively to reduce non-revenue water by accumulating surveying data and verifying the results in the business field of water distribution systems under local governments.

  • PDF

Effect of Total Resistance of Electrochemical Cell on Electrochemical Impedance of Reinforced Concrete Using a Three-Electrode System (3전극방식을 활용한 철근 콘크리트의 교류임피던스 측정 시 전기화학 셀저항의 영향)

  • Khan, Md. Al-Masrur;Kim, Je-Kyoung;Yee, Jurng-Jae;Kee, Seong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.82-92
    • /
    • 2022
  • This study aims to investigate the effect of total electrochemical cell resistance (TECR) on electrochemical impedance (EI) measurements of reinforced concrete (RC) by electrochemical impedance spectroscopy (EIS) using a three-electrode system. A series of experimental study is performed to measure electrochemical behavior of a steel bar embedded in a concrete cube specimen, with a side length of 200 mm, in various experimental conditions. Main variables include concrete dry conditions, coupling resistance between sensing electrodes and concrete surface, and area of the counter electrode. It is demonstrated that EI values remains stable when the compliant voltage of a measuring device is sufficiently great compared to the potential drop caused by TECR of concrete specimens. It is confirmed that the effect of the coupling resistance of TECR is far more influential than other two factors (concrete dry conditions and area of the counter electrode). The results in this study can be used as a fundamental basis for development of a surface-mount sensor for corrosion monitoring of reinforced concrete structures exposed to wet-and-dry cycles under marine environment.

The Study on Salt Injury and Carbonation of Reinforced-Concrete (철근콘크리트의 염해와 중성화 피해 사례 연구)

  • Kim, Dong-Hun;Lim, Nam-Gi;Lee, Sang-Beam
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.165-172
    • /
    • 2002
  • A reinforced concrete building neighboring in Pusan or Ulsan where is directly exposed to salt water contrasting with other in land areas contains much salt content percolated from the outside that the high salt content percolates and diffuses through the inside of reinforced concrete; therefore, an immovable tunic surrounding it begins to be destroyed and eroded with high speed. At the time, the cross-sectional area and volume expansion of re-bar reinforcing result in being cracks make a rapid progress gradually until they appear in the surface of the one, the phenomenon such as being a thin layer or falling off the part of it causes a lowering of its durability and might collapse the concrete construction. So far, we've investigated into salt content of reinforced concrete constructions neighboring in a seaside district and damage by carbonation, and we came to a conclusion as follows: $\circled1$ Under the oceanic circumstance a concrete construction is influenced by sea water directly that contains much amount of salt content contrasting with other constructions on inland areas. $\circled2$ Because of chloride penetration the carbonation of reinforced concrete made a rapid progress until more than the covering thickness of re-bar. $\circled3$ An old reinforced concrete building which has been piled up salt injury and proceeding the carbonation of its cross-sectional area. $\circled4$ According to rapidly cracking from the inside to surface of reiforced concrete, the phenomenon of being a thin layer or falling off the part of reinforced concrete results in a lowering of durability and shortening the life-time of concrete construction itself.

Development of a Durable Startup Procedure for PEMFCs (고분자전해질 연료전지 내구성 향상을 위한 시동 기술 개발에 관한 연구)

  • Kim, Jae-Hong;Jo, Yoo-Yeon;Jang, Jong-Hyun;Kim, Hyung-Juhn;Lim, Tae-Hoon;Oh, In-Hwan;Cho, Eun-Ae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.288-294
    • /
    • 2009
  • Various polymer electrolyte membrane fuel cell (PEMFC) startup procedures were tested to explore possible techniques for reducing performance decay and improving durability during repeated startup-shutdown cycles. The effects of applying a dummy load, which prevents cell reversal by consuming the air at the cathode, on the degradation of a membrane electrode assembly (MEA) were investigated via single cell experiments. The electrochemical results showed that application of a dummy load during the startup procedure significantly reduced the performance decay, the decrease in the electrochemically active surface area (EAS), and the increase in the charge transfer resistance ($R_{ct}$), which resulted in a dramatic improvement in durability. After 1200 startup-shutdown cycles, post-mortem analyses were carried out to investigate the degradation mechanisms via various physicochemical methods including FESEM, an on-line $CO_2$ analysis, EPMA, XRD, FETEM, SAED, FTIR. After 1200 startup-shutdown cycles, severe Pt particle sintering/agglomeration/dissolution and carbon corrosion were observed at the cathode catalyst layer when starting up a PEMFC without a dummy load, which significantly contributed to a loss of Pt surface area, and thus to cell performance degradation. However, applying a dummy load during the startup procedure remarkably mitigated such severe degradations, and should be used to increase the durability of MEAs in PEMFCs. Our results suggest that starting up PEMFCs while applying a dummy load is an effective method for mitigating performance degradation caused by reverse current under a repetition of unprotected startup cycles.

  • PDF

The Component Analysis of Foreign Substance Occurred in Water Distribution Networks (상수관망에서 발생하는 이물질의 성분분석)

  • Choi, Min-Ah;Kim, Do-Hwan;Bae, Chul-Ho;Lee, Doojin;Choi, Doo Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.614-623
    • /
    • 2014
  • Customers water quality complaints by foreign substance in local water service can be able to call the main cause bring the distrust for tap water and inhibiting the rate of drinking water. In this study, foreign substances were collected in the target region. Foreign objects were subjected to qualitative and quantitative analysis of compounds and elements components to reveal the cause of detection. Also, resolve the complaints by foreign substance and improve the reliability for tap water providing high quality water supply scheme. Collected substances at the water quality complaint area were included in inorganic compounds due to internal corrosion and aging pipeline, as well as organic compounds containing a large amount of carbon (C) and oxygen (O) component. To decide and reduce for foreign substance, objective assessment of pipe condition in target area was required.

A Study on the Expection of the Stress to the Stiffness Variation of Members on Truss Railway Bridge (부재의 강성변화에 따른 강철도 트러스 교량의 발생응력 예측에 관한 연구)

  • Cho, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.535-541
    • /
    • 1997
  • It is proper that the load distribution and the actual stress of members is analyzed by field measurement in estimating to the behavior of truss railway bridges, but those procedures are very difficult. So, the studies for the deduction of the stress, using the indirect data which are able to get from the research and investigation without field measurement, are needed. In this study, to investigate quantitically the variation of the stress of members, the stresses are obtained from the simulation which is considered the the reduction of the section area and the stiffness due to the corrosion and the degree of the stress ratio and the distribution is calculated. As the results, the stress of truss members is almost lineary increased to the decreasing of the area and the lower chord is greatly affected. And the increasing of the stress is predicted by the superposition to the results of the amount of that in each members.

  • PDF

Service Life Prediction and Carbonation of Bridge Structures according to Environmental Conditions (환경 조건에 따른 교량구조물의 탄산화 현황 및 내구수명 예측)

  • Kim, Hun-Kyom;Kim, Sung-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.126-132
    • /
    • 2010
  • Carbonation is the results of the interaction of carbon dioxide gas in the atmosphere with the alkaline hydroxides in the concrete. Reinforced steel corrosion due to concrete carbonation is one of main factors on the decrease in durability of RC structure. This study investigates the influence of carbonation on the bridges under various environment condition and quantifies the effect of carbonation various domestic field data. The failure probability of durability is evaluated on the basis of reliability concept. In addition, service life of the structures is predicted based on the intended probability of durable failure in domestic concrete specification. According to experimental results of the carbonation depth, the carbonation depth increased with structural age. It is analyzed that carbonation velocity of the structures under urban area and sea condition is 1.6-1.9 times faster than the river condition. Service life of the bridges under urban area and sea condition is decreased about 2.4-3.3 times than river condition.

Evaluation of steel corrosion and Concrete Freeze-Thaw durability on the Liquid non-chloride deicer (액상 비염화물계 제설제의 강재 부식성 및 콘크리트 동결융해 내구성 평가)

  • Lee, Beung-Duk;Kim, Hyun-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.529-532
    • /
    • 2008
  • Domestic area of most be happened chloride deicer damage. Because daily mean temperature is below 0$^{\circ}C$ from the area of domestic most. Use of deicing chemicals has been and will continue to be a major part of highway snow and ice control methods. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, not only the source of substantial cost penalties due to their corrosive action and ability to deterioration roadway surface materials but also the source of environmental damages. Particularly, it has been recognized that chlorides present in deicing agents can significantly increase concrete surface scaling. In severe cases, scaling can result in dislodgement of coarse aggregate. This research estimates that pH and test of specific pollutants, dynamic modulus of elasticity for freeze-thaw test of concrete were higher than those NaCl, $CaCl_2$, and NaCl+$CaCl_2$(7:3, w/w), also weight losses for scaling test of concrete were much lower than those of NaCl, $CaCl_2$, and NaCl+$CaCl_2$(7:3, w/w).

  • PDF