• Title/Summary/Keyword: correlation algorithm

Search Result 1,953, Processing Time 0.035 seconds

Development of a Storage Level and Capacity Monitoring and Forecasting Techniques in Yongdam Dam Basin Using High Resolution Satellite Image (고해상도 위성자료를 이용한 용담댐 유역 저수위/저수량 모니터링 및 예측 기술 개발)

  • Yoon, Sunkwon;Lee, Seongkyu;Park, Kyungwon;Jang, Sangmin;Rhee, Jinyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1041-1053
    • /
    • 2018
  • In this study, a real-time storage level and capacity monitoring and forecasting system for Yongdam Dam watershed was developed using high resolution satellite image. The drought indices such as Standardized Precipitation Index (SPI) from satellite data were used for storage level monitoring in case of drought. Moreover, to predict storage volume we used a statistical method based on Principle Component Analysis (PCA) of Singular Spectrum Analysis (SSA). According to this study, correlation coefficient between storage level and SPI (3) was highly calculated with CC=0.78, and the monitoring and predictability of storage level was diagnosed using the drought index calculated from satellite data. As a result of analysis of principal component analysis by SSA, correlation between SPI (3) and each Reconstructed Components (RCs) data were highly correlated with CC=0.87 to 0.99. And also, the correlations of RC data with Normalized Water Surface Level (N-W.S.L.) were confirmed that has highly correlated with CC=0.83 to 0.97. In terms of high resolution satellite image we developed a water detection algorithm by applying an exponential method to monitor the change of storage level by using Multi-Spectral Instrument (MSI) sensor of Sentinel-2 satellite. The materials of satellite image for water surface area detection in Yongdam dam watershed was considered from 2016 to 2018, respectively. Based on this, we proposed the possibility of real-time drought monitoring system using high resolution water surface area detection by Sentinel-2 satellite image. The results of this study can be applied to estimate of the reservoir volume calculated from various satellite observations, which can be used for monitoring and estimating hydrological droughts in an unmeasured area.

Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions (계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가)

  • Uran Chung;Jinyoung Rhee;Miae Kim;Soo-Jin Sohn
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.2
    • /
    • pp.80-98
    • /
    • 2023
  • This study explores the effectiveness of various data preprocessing algorithms for improving subseasonal to seasonal (S2S) climate predictions from six climate forecast models and their Multi-Model Ensemble (MME) using a deep learning-based postprocessing model. A pipeline of data transformation algorithms was constructed to convert raw S2S prediction data into the training data processed with several statistical distribution. A dimensionality reduction algorithm for selecting features through rankings of correlation coefficients between the observed and the input data. The training model in the study was designed with TimeDistributed wrapper applied to all convolutional layers of U-Net: The TimeDistributed wrapper allows a U-Net convolutional layer to be directly applied to 5-dimensional time series data while maintaining the time axis of data, but every input should be at least 3D in U-Net. We found that Robust and Standard transformation algorithms are most suitable for improving S2S predictions. The dimensionality reduction based on feature selections did not significantly improve predictions of daily precipitation for six climate models and even worsened predictions of daily maximum and minimum temperatures. While deep learning-based postprocessing was also improved MME S2S precipitation predictions, it did not have a significant effect on temperature predictions, particularly for the lead time of weeks 1 and 2. Further research is needed to develop an optimal deep learning model for improving S2S temperature predictions by testing various models and parameters.

Recommender Systems using Structural Hole and Collaborative Filtering (구조적 공백과 협업필터링을 이용한 추천시스템)

  • Kim, Mingun;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.107-120
    • /
    • 2014
  • This study proposes a novel recommender system using the structural hole analysis to reflect qualitative and emotional information in recommendation process. Although collaborative filtering (CF) is known as the most popular recommendation algorithm, it has some limitations including scalability and sparsity problems. The scalability problem arises when the volume of users and items become quite large. It means that CF cannot scale up due to large computation time for finding neighbors from the user-item matrix as the number of users and items increases in real-world e-commerce sites. Sparsity is a common problem of most recommender systems due to the fact that users generally evaluate only a small portion of the whole items. In addition, the cold-start problem is the special case of the sparsity problem when users or items newly added to the system with no ratings at all. When the user's preference evaluation data is sparse, two users or items are unlikely to have common ratings, and finally, CF will predict ratings using a very limited number of similar users. Moreover, it may produces biased recommendations because similarity weights may be estimated using only a small portion of rating data. In this study, we suggest a novel limitation of the conventional CF. The limitation is that CF does not consider qualitative and emotional information about users in the recommendation process because it only utilizes user's preference scores of the user-item matrix. To address this novel limitation, this study proposes cluster-indexing CF model with the structural hole analysis for recommendations. In general, the structural hole means a location which connects two separate actors without any redundant connections in the network. The actor who occupies the structural hole can easily access to non-redundant, various and fresh information. Therefore, the actor who occupies the structural hole may be a important person in the focal network and he or she may be the representative person in the focal subgroup in the network. Thus, his or her characteristics may represent the general characteristics of the users in the focal subgroup. In this sense, we can distinguish friends and strangers of the focal user utilizing the structural hole analysis. This study uses the structural hole analysis to select structural holes in subgroups as an initial seeds for a cluster analysis. First, we gather data about users' preference ratings for items and their social network information. For gathering research data, we develop a data collection system. Then, we perform structural hole analysis and find structural holes of social network. Next, we use these structural holes as cluster centroids for the clustering algorithm. Finally, this study makes recommendations using CF within user's cluster, and compare the recommendation performances of comparative models. For implementing experiments of the proposed model, we composite the experimental results from two experiments. The first experiment is the structural hole analysis. For the first one, this study employs a software package for the analysis of social network data - UCINET version 6. The second one is for performing modified clustering, and CF using the result of the cluster analysis. We develop an experimental system using VBA (Visual Basic for Application) of Microsoft Excel 2007 for the second one. This study designs to analyzing clustering based on a novel similarity measure - Pearson correlation between user preference rating vectors for the modified clustering experiment. In addition, this study uses 'all-but-one' approach for the CF experiment. In order to validate the effectiveness of our proposed model, we apply three comparative types of CF models to the same dataset. The experimental results show that the proposed model outperforms the other comparative models. In especial, the proposed model significantly performs better than two comparative modes with the cluster analysis from the statistical significance test. However, the difference between the proposed model and the naive model does not have statistical significance.

Development of Normalized Difference Blue-ice Index (NDBI) of Glaciers and Analysis of Its Variational Factors by using MODIS Images (MODIS 영상을 이용한 빙하의 정규청빙지수(NDBI) 개발 및 변화요인 분석)

  • Han, Hyangsun;Ji, Younghun;Kim, Yeonchun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.481-491
    • /
    • 2014
  • Blue-ice area is a glacial ice field in ice sheet, ice shelf and glaciers where snow ablation and sublimation is larger than snowfall. As the blue-ice area has large influences on the meteorite concentration mechanism and ice mass balance, it is required to quantify the concentration of blue-ice. We analyzed spectral reflectance characteristics of blue-ice, snow and cloud by using MODIS images obtained over blue-ice areas in McMurdo Dry Valleys, East Antarctica, from 2007 to 2012. We then developed Normalized Difference Blue-ice Index (NDBI) algorithm which quantifies the concentration of blue-ice. Snow and cloud have a high reflectance in visible and near-infrared (NIR) bands. Reflectance of blue-ice is high in blue band, while that lowers in the NIR band. NDBI is calculated by dividing the difference of reflectance in the blue and NIR bands by the sum of reflectances in the two bands so that NDBI = (Blue-NIR)/(Blue + NIR). NDBI calculated from the MODIS images showed that the blue-ice areas have values ranging from 0.2 to 0.5, depending on the exposure and concentration of blue-ice. It is obviously different from that of snow and cloud that has values less than 0.2 or rocks with negative values. The change of NDBI values in the blue-ice area has higher correlation with snow depth ($R^2=0.699$) than wind speed ($R^2=0.012$) or air temperature ($R^2=0.278$), all measured at a meteorological station installed in McMurdo Dry Valleys. As the snow depth increased, the NDBI value decreased, which suggests that snow depth can be estimated from NDBI values over blue-ice areas. The NDBI algorithm developed in this study will be useful for various polar research fields such as meteorite exploration, analysis of ice mass balance as well as the snow depth estimation.

Calculation and Monthly Characteristics of Satellite-based Heat Flux Over the Ocean Around the Korea Peninsula (한반도 주변 해양에서 위성 기반 열플럭스 산출 및 월별 특성 분석)

  • Kim, Jaemin;Lee, Yun Gon;Park, Jun Dong;Sohn, Eun Ha;Jang, Jae-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.519-533
    • /
    • 2018
  • The sensible heat flux (SHF)and latent heat flux (LHF) over Korean Peninsula ocean during recent 4 years were calculated using Coupled Ocean-Atmosphere Response Experiment (COARE) 3.5 bulk algorithm and satellite-based atmospheric-ocean variables. Among the four input variables (10-m wind speed; U, sea surface temperature; $T_s$, air temperature; $T_a$, and air humidity; $Q_a$) required for heat flux calculation, Ta and $Q_a$, which are not observed directly by satellites, were estimated from empirical relations developed using satellite-based columnar atmospheric water vapor (W) and $T_s$. The estimated satellite-based $T_a$ and $Q_a$ show high correlation coefficients above 0.96 with the buoy observations. The temporal and spatial variability of monthly ocean heat fluxes were analyzed for the Korean Peninsula ocean. The SHF showed low values of $20W/m^2$ over the entire areas from March to August. Particularly, in July, SHF from the atmosphere to the ocean, which is less than $0W/m^2$, has been shown in some areas. The SHF gradually increased from September and reached the maximum value in December. Similarly, The LHF showed low values of $40W/m^2$ from April to July, but it increased rapidly from autumn and was highest in December. The analysis of monthly characteristics of the meteorological variables affecting the heat fluxes revealed that the variation in differences of temperature and humidity between air and sea modulate the SHF and LHF, respectively. In addition, as the sensitivity of SHF and LHF to U increase in winter, it contributed to the highest values of ocean heat fluxes in this season.

The Adaptive Personalization Method According to Users Purchasing Index : Application to Beverage Purchasing Predictions (고객별 구매빈도에 동적으로 적응하는 개인화 시스템 : 음료수 구매 예측에의 적용)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.95-108
    • /
    • 2011
  • TThis is a study of the personalization method that intelligently adapts the level of clustering considering purchasing index of a customer. In the e-biz era, many companies gather customers' demographic and transactional information such as age, gender, purchasing date and product category. They use this information to predict customer's preferences or purchasing patterns so that they can provide more customized services to their customers. The previous Customer-Segmentation method provides customized services for each customer group. This method clusters a whole customer set into different groups based on their similarity and builds predictive models for the resulting groups. Thus, it can manage the number of predictive models and also provide more data for the customers who do not have enough data to build a good predictive model by using the data of other similar customers. However, this method often fails to provide highly personalized services to each customer, which is especially important to VIP customers. Furthermore, it clusters the customers who already have a considerable amount of data as well as the customers who only have small amount of data, which causes to increase computational cost unnecessarily without significant performance improvement. The other conventional method called 1-to-1 method provides more customized services than the Customer-Segmentation method for each individual customer since the predictive model are built using only the data for the individual customer. This method not only provides highly personalized services but also builds a relatively simple and less costly model that satisfies with each customer. However, the 1-to-1 method has a limitation that it does not produce a good predictive model when a customer has only a few numbers of data. In other words, if a customer has insufficient number of transactional data then the performance rate of this method deteriorate. In order to overcome the limitations of these two conventional methods, we suggested the new method called Intelligent Customer Segmentation method that provides adaptive personalized services according to the customer's purchasing index. The suggested method clusters customers according to their purchasing index, so that the prediction for the less purchasing customers are based on the data in more intensively clustered groups, and for the VIP customers, who already have a considerable amount of data, clustered to a much lesser extent or not clustered at all. The main idea of this method is that applying clustering technique when the number of transactional data of the target customer is less than the predefined criterion data size. In order to find this criterion number, we suggest the algorithm called sliding window correlation analysis in this study. The algorithm purposes to find the transactional data size that the performance of the 1-to-1 method is radically decreased due to the data sparity. After finding this criterion data size, we apply the conventional 1-to-1 method for the customers who have more data than the criterion and apply clustering technique who have less than this amount until they can use at least the predefined criterion amount of data for model building processes. We apply the two conventional methods and the newly suggested method to Neilsen's beverage purchasing data to predict the purchasing amounts of the customers and the purchasing categories. We use two data mining techniques (Support Vector Machine and Linear Regression) and two types of performance measures (MAE and RMSE) in order to predict two dependent variables as aforementioned. The results show that the suggested Intelligent Customer Segmentation method can outperform the conventional 1-to-1 method in many cases and produces the same level of performances compare with the Customer-Segmentation method spending much less computational cost.

Abnormal Perfusion on Myocardial Perfusion SPECT in Patients with Wolff-Parkinson-White Syndrome (Wolff-Parkinson-White 증후군 환자의 심근 관류 이상)

  • Kang, Do-Young;Cha, Kwang-Soo;Han, Seung-Ho;Park, Tae-Ho;Kim, Moo-Hyun;Kim, Young-Dae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • Purpose: Abnormal myocardial perfusion may be caused by ventricular preexcitation, but its location, extent, severity and correlation with accessory pathway (AP) are not established. We evaluated perfusion patterns on myocardial perfusion SPECT and location of AP in patients with WPW (Wolff-Parkinson-White) syndrome. Materials and Methods: Adenosine Tc-99m MIBI or Tl-201 myocardial perfusion SPECT was performed in 11 patients with WPW syndrome. Perfusion defects (PD) were compared to AP location based on ECG with Fitzpatrick's algorithm or electrophysiologic study and radiofrequency catheter ablation. Results: Patients had atypical chest discomfort or no symptom. Risk of coronary artery disease (CAD) was below 0.1 in 11 patients using the nomogram to estimate the probability of CAD. Coronary angiography was performed in 4 patients (mid-LAD 50% in one, normal in others). In 4 patients, AP localization was done by electrophysiologic study and radiofrequency catheter ablation (RFCA). Small to large extent ($11.0{\pm}8.5%$, range:$3{\sim}35%$) and mild to moderate severity ($-71{\pm}42.7%$, range:$-2l7{\sim}-39%$) of reversible (n=9) or fixed (n=1) perfusion defects were noted. One patient with right free wall (right lateral) AP showed normal. PD locations were variable following the location of AP. One patient with left lateral wall AP was followed 6 weeks after RFCA and showed significantly decreased PD on SPECT with successful ablation. Conclusion: Myocardial perfusion defect showed variable extent, severity and location in patients with WPW syndrome. Abnormal perfusion defect showed in most of all patients, but it did not seem to be correlated specifically with location of accessory pathway and coronary artery disease. Therefore myocardial perfusion SPECT should be interpreted carefully in patients with WPW syndrome.

Characteristic Response of the OSMI Bands to Estimate Chlorophyll $\alpha$ (클로로필 $\alpha$ 추정시 OSMI 밴드의 광학 반응 특성)

  • 서영상;이나경;장이현;황재동;유신재;임효숙
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.187-199
    • /
    • 2002
  • Correlation between chlorophyll a in the East China Sea and spectral bands (412, 443, 490, (510), 555, (676, 765)nm) of Ocean Scanning Multi-Spectral Imager (OSMI) including the profile multi-spectral radiometer (PRR-800) was studied. The values of remote sensing reflectance (Rrs) at the bands corresponding to the field chlorophyll $\alpha$ in the East China Sea were much higher than those in clear waters off California, USA. In case of the particle absorptions related to the chlorophyll a concentration at the spectral bands (440, 670nm) were much higher in the East China Sea than the ones in the clean waters off California. The normalized water leaving radiances (nLw) at 412, 443, 490, 555 nm of OSMI and the field chlorophyll a in the East China Sea were correlated each other. According to the results, the relationship between field chlorophyll $\alpha$ and nLw 410 nm in OSMI bands was the lowest, whereas that between field chlorophyll a and nLw 555 nm in the bands was the highest. Reciprocal action between the field chlorophyll a and the band ratio of the OSMI bands (nLw410/nLw555, nLw443/nLw555, nLw490/nLw555) was also studied. Relationship between the chlorophyll $\alpha$ and the band ratio (nLw490/nLw555) was highest in the OSMI bands. Relationship between the chlorophyll $\alpha$ and the ratio (nLw490/nLw555) was higher than one in the nLw410/nLw555. The difference in the estimated chlorophyll $\alpha$ (mg/m$^3$) between OSMI and SeaWiFS (Sea Viewing Wide Field-of-View Sensor) at the special observing stations in the northern eastern sea of Jeju Island in February 25, 2002 was about less than 0.3 mg/m$^3$ within 3 hours. It is suggested that OC2 (ocean color chlorophyll 2 algorithm) be used to get much better estimation of chlorophyll $\alpha$ from OSMI than the ones from the updated algorithms as OC4.

Approximation of Multiple Trait Effective Daughter Contribution by Dairy Proven Bulls for MACE (젖소 국제유전능력 평가를 위한 종모우별 다형질 Effective Daughter Contribution 추정)

  • Cho, Kwang-Hyun;Choi, Tae-Jeong;Cho, Chung-Il;Park, Kyung-Do;Do, Kyoung-Tag;Oh, Jae-Don;Lee, Hak-Kyo;Kong, Hong-Sik;Lee, Joon-Ho
    • Journal of Animal Science and Technology
    • /
    • v.55 no.5
    • /
    • pp.399-403
    • /
    • 2013
  • This study was conducted to investigate the basic concept of multiple trait effective daughter contribution (MTEDC) for dairy cattle sires and calculate effective daughter contribution (EDC) by applying a five lactation multiple trait model using milk yield test records of daughters for the Multiple-trait Across Country Evaluation (MACE). Milk yield data and pedigree information of 301,551 cows that were the progeny of 2,046 Korean and imported dairy bulls were collected from the National Agricultural Cooperative Federation and used in this study. For MTEDC approximation, the reliability of the breeding value was separated based on parents average, own yield deviation and mate adjusted progeny contribution. EDC was then calculated by lactation using these reliabilities. The average number of recorded daughters per sire by lactations were 140.57, 94.24, 55.14, 29.20 and 14.06 from the first to fifth lactation, respectively. However, the average EDC per sire by lactation using the five lactation multiple trait model was 113.49, 89.28, 73.56, 54.02 and 35.08 from the first to fifth lactation, respectively, while the decrease of EDC in late lactations was comparably lower than the average number of recorded daughters per sire. These findings indicate that the availability of daughters without late lactation records is increased by genetic correlation using the multiple trait model. Owing to the relatedness between the EDC and reliability of the estimated breeding value for sire, understanding the MTEDC algorithm and continuous monitoring of EDC is required for correct MACE application of the five lactation multiple trait model.

Reproducibility of Gated Myocardial Perfusion SPECT for the Assessment of Myocardial Function: Comparison with Thallium-201 and Technetium-99m-MIBI (심근 기능 측정에 사용된 게이트 심근 관류 SPECT 방법의 재현성 평가: $^{201}Tl$$^{99m}Tc$-MIBI 게이트 SPECT의 비교)

  • Hyun, In-Young;Seo, Jeong-Kee;Hong, Eui-Soo;Kim, Dae-Hyuk;Kim, Sung-Eun;Kwan, Jun;Park, Keum-Soo;Choe, Won-Sick;Lee, Woo-Hyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.5
    • /
    • pp.381-392
    • /
    • 2000
  • Purpose: We compared the reproducibility of $^{201}Tl\;and\;^{99m}Tc$-sestamibi (MIBI) gated SPECT measurement of myocardial function using the Germano algorithm Materials and Methods: Gated SPECT acquisition was repeated in the same position in 30 patients who received $^{201}Tl$ and in 26 who received $^{99m}Tc$-MIBI. The quantification of end-diastolic volume (EDV), end-systolic volume (ESV), and ejection fraction (EF) on $^{201}Tl\;and\;^{99m}Tc$-MIBI gated SPECT was processed independently using Cedars quantitative gated SPECT software. The reproducibility of the assessment of myocardial function on $^{201}Tl$ gated SPECT was compared with that of $^{99m}Tc$-MIBI gated SPECT Results: Correlation between the two measurements for volumes and EF was excellent by the repeated gated SPECT studies of $^{201}Tl$ (r=0.928 to 0.986; p<0.05) and $^{99m}Tc$-MIBI (r=0.979 to 0.997; p<0.05). However, Bland Altman analysis revealed the 95% limits of agreement (2 SD) for volumes and EF were tighter by repeated $^{99m}Tc$-MIBI gated SPECT (EDV: 14.1 ml, ESV: 9.4 ml and EF: 5.5%) than by repeated $^{201}Tl$ gated SPECT (EDV: 24.1 ml, ESV: 18.6 ml and EF: 10.3%). The root mean square (RMS) values of the coefficient of variation (CV) for volumes und EFs were smaller by repeated $^{99m}Tc$-MIBI gated SPECT (EDV: 2.1 ml, ESV 2.7 ml and EF: 2.3%) than by repeated $^{201}Tl$ gated SPECT (EDV: 3.2 ml, ESV: 3.5 ml and EF: 5.2%). Conclusion: $^{99m}Tc$-MIBI provides more reproducible volumes and EF than $^{201}Tl$ on repeated acquisition gated SPECT. $^{99m}Tc$-MIBI gated SPECT is the preferable method for the clinical monitoring of myocardial function.

  • PDF