• Title/Summary/Keyword: correction methods

Search Result 1,984, Processing Time 0.024 seconds

A CLASSIFICATION OF THE SECOND ORDER PROJECTION METHODS TO SOLVE THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • v.22 no.4
    • /
    • pp.645-658
    • /
    • 2014
  • Many projection methods have been progressively constructed to find more accurate and efficient solution of the Navier-Stokes equations. In this paper, we consider most recently constructed projection methods: the pressure correction method, the gauge method, the consistent splitting method, the Gauge-Uzawa method, and the stabilized Gauge-Uzawa method. Each method has different background and theoretical proof. We prove equivalentness of the pressure correction method and the stabilized Gauge-Uzawa method. Also we will obtain that the Gauge-Uzawa method is equivalent to the gauge method and the consistent splitting method. We gather theoretical results of them and conclude that the results are also valid on other equivalent methods.

The Evaluation of Image Correction Methods for SPECT/CT in Various Radioisotopes with Different Energy Levels (SPECT/CT에서 서로 다른 에너지의 방사성동위원소 사용시 영상보정기법의 유용성 평가)

  • Shin, Byung Ho;Kim, Seung Jeong;Yun, Seok Hwan;Kim, Tae Yeop;Lim, Jung Jin;Woo, Jae Ryong;Oh, So Won;Kim, Yu Kyeong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.53-58
    • /
    • 2013
  • Purpose: To optimize correction method for SPECT/CT, image quality consisting of resolution and contrast was evaluated using three radioisotopes ($^{99m}Tc$, $^{201}Tl$ and $^{131}I$) and three different correction methods; attenuation correction (AC), scatter correction (SC) and both attenuation and scatter correction (ACSC). Materials and Methods: Images were acquired with a SPECT/CT scanner and a conventional CT protocol with an OESM reconstruction algorithm (2 iterations and 10 subsets). For resolution measurement, fixed radioactivity (2.22 kBq) was infused into a spatial resolution phantom and full width at half maximum (FWHM) was measured using a vendor-provided software. For contrast evaluation, radioactive source with a ratio of 1:8 to background was filled in a Flanged Jaszczak phantom and percent contrast (%) were calculated. All the parameters for image quality were compared with non-correction (NC) method. Results: As compared with NC, image resolution of all three isotopes were significantly improved by AC and ACSC, not by SC. In particular, ACSC showed better resolution than AC alone for $^{99m}Tc$ and $^{201}Tl$. Image contrast of all three radioisotopes in a sphere with the largest diameter were enhanced by all correction methods. ACSC showed the highest contrast in all three radioisotopes, which was the most accurate in $^{99m}Tc$ (85.9%). Conclusion: Image quality of SPECT/CT was improved in all the radioisotopes by CT-based attenuation correction methods, except SC alone. SC failed to improve resolution in any radioisotopes, but it was effective in contrast enhancement. ACSC would be the best correction method as it improved resolution in radioisotopes with low energy levels and contrast in radioisotope with low energy levels. However, in radioisotope with high energy level, AC would be better than ACSC for resolution improvement.

  • PDF

A Comparative Study of Blood Lead Measurement by Polarized Zeman Effect Correction AAS and D2 Correction AAS Method (편광 Zeeman 보정 및 D2 보정 방법에 의한 혈중연 측정치의 비교 연구)

  • Lee, Seok Ki;Ahn, Kyu Dong;Lee, Byung Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 1995
  • Blood lead assay by $D_2$ lamp background correction method of atomic absorption spectrophotometer(AAS) with wavelength of 283.3 nm is most popular in occupational health practice in Korea. On the other hand, $D_2$ lamp background correction method with wavelength of 217.0 nm is also often used in general chemical analysis for lead assay in general purpose. But both methods have some weakness of background correction which brought direct effect on the results of analysis. Recently blood lead assay with polarized Zeeman effect of AAS was introduced and is now preferred in many laboratory than $D_2$ correction method in blood lead analysis. But still AAS with $D_2$ lamp are widely used in the field of occupational health in Korea. This study compared blood lead assay data with $D_2$ correction methods(283.3 and 217.0 nm) and with that of polarized Zeeman effect correction method to evaluate the validity of 02 correction methods. The results obtained were as follows; 1. Taking the value of polarized Zeeman effect method as reference value of 1.00, the mean relative value of $D_2$ correction method with wavelength of 217.0 nm was 0.92 and that with wavelength of 283.3 nm was 0.90 respectively in the analysis of blood lead whose value were below $20.0{\mu}g/dl$(p<0.001). Both mean values were statistically smaller than polarized Zeeman effect correction method. But in the analysis of blood whose value were between 20.0 to $20.0{\mu}g/dl$, the mean relative value of $D_2$ correction method was 0.96 in both wavelength and did not differ from polarized Zeeman effect method(p<0.001). There was no difference of blood lead between $D_2$ correction method and polarized Zeeman effect method in the analysis of blood lead whose value were over $40.0{\mu}g/dl$. 2. The variations of background correction value in polarized Zeeman effect method were not changed by increase of blood lead, but those in $D_2$ correction methods were increased by the increase of blood lead. While then relative standard deviation(RSD) of data measured by Zeeman effect method were decreased by the increase of blood lead, those by $D_2$ methods were nol differed by the increase of blood lead.

  • PDF

Image Correction Method for Uncooled IR TECless Detector with Non-linear characteristics due to Temperature Change

  • Shin, Jung-Ho;Ye, Seong-Eun;Kim, Bo-Mee;Park, Chan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.19-26
    • /
    • 2017
  • In this paper, we propose an efficient image equipment implementation for the detector characteristics of various detectors by analyzing un-cooled thermal detector that exhibits nonlinear changes due to external temperature effects. First, we explain Thermal Electric Cooler for un-cooled detector temperature control system and Non-image correction methode for IR system. Second, we present the results of a study on an efficient control technique that can minimize the deterioration of image quality by controlling a un-cooled thermal detector without a thermal electric cooler(TEC) inside. Third, we suggest Image Correction Methods for Uncooled IR TECless Detector with Non-linear characteristics due to Temperature Change. So, we analyze and present the results of Image correction methods for various un-cooled thermal detector.

New In-Orbit Pixel Correction Method

  • Kim Youngsun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Chang Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.604-607
    • /
    • 2005
  • All CCD pixels do not react uniformly even if the light of same radiance enters into the camera. This comes from the different camera optical characteristics, the read-out characteristics, the pixel own characteristics and so on. Usually, the image data of satellite camera can be corrected by the various image-processing methods in the ground. However, sometimes, the in-orbit correction is needed to get the higher quality image. Especially high frequency pixel correction in the middle of in-orbit mission is needed because the in-orbit data compression with the high frequency loss is essential to transmit many data in real time due to the limited RF bandwidth. In this case, this high frequency correction can prevent have to have any unnecessary high frequency loss. This in-orbit correction can be done by the specific correction table, which consists of the gain and the offset correction value for each pixel. So, it is very important to get more accurate correction table for good correction results. This paper shows the new algorithm to get accurate pixel correction table. This algorithm shall be verified theoretically and also verified with the various simulation and the test results.

  • PDF

New Speed Adjustment Factor for Analyzing Level of Service at Multi-Lane Highway (다차로도로의 서비스수준 분석을 위한 속도보정계수 개선에 관한 연구)

  • Kim, Wongil;Kang, Woneui;Noh, Chang-Gyun;Park, Bumjin
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.167-173
    • /
    • 2012
  • PURPOSES : This study is to develop speed correction factor for more realistic Level-of-Service(LOS) at multilane highway. METHODS : In this study, we compared speed difference the degree of speed reductions in actual multilane road conditions with speed reduction considering speed correction factor presented in highway capacity manual using statistical techniques. And also we presents new speed correction factor analyzing collected data at national highway No.1 (Goyang~Wolrung). RESULTS : The result of analyzing and comparing new suggested speed correction factor with speed correction factor in Korea Highway Capacity Manual (KHCM) shows RMSE (Root Mean Square Error) in new speed correction factor (RMSE 1.5) is much lower than existing speed correction factor (RMSE 13.4). New suggested speed correction can be used for analyzing Level-of-Service at multilane highway. And also we suggests improvements for analysis procedure in analyzing Level-of-Service at multilane highway CONCLUSIONS : As a result of comparing differences, we draw the causes that effect the differences in speed and suggest new speed correction factor that consider traffic volumes. It can be more rational because it uses speed correction factor which can consider more realistic traffic conditions, etc.

The Awareness Survey of Vision Correction Surgery Side Effect (시력교정술 부작용 인지도 조사)

  • Lee, Jeung-Young;Seo, Jung-Ick;Park, Eun-Kyoo
    • Journal of Korean Clinical Health Science
    • /
    • v.4 no.4
    • /
    • pp.737-741
    • /
    • 2016
  • Purpose. To investigate awareness of vision correction surgery side effects and investigated side effects affect vision correction surgery decisions. Methods. This study was performed on 85 college students. The awareness of vision correction surgery, the awareness of vision correction surgery side effects, and investigated side effects affect surgery decisions. Results. 37.6 % (32 people) replied that the drying effects is representative side effects of the eye correction surgery. 68.2% (58 people) answered the reason of eye surgery is uncomfortable wearing glasses. 74.1%(63 people) answered the side effects does not affect vision correction surgery decision. Prior to hear a description of side effects, 31.8% percent people hope the surgery. after listening to explain of side effects, only 10.6% percent people hope the surgery. Conclusions. People who want to get vision correction surgery should check their vision condition through prior examination and consultation. What side effects in the operation should be reviewed. That is the only way to reduce side effects.

Scoring Methods for Improvement of Speech Recognizer Detecting Mispronunciation of Foreign Language (외국어 발화오류 검출 음성인식기의 성능 개선을 위한 스코어링 기법)

  • Kang Hyo-Won;Kwon Chul-Hong
    • MALSORI
    • /
    • no.49
    • /
    • pp.95-105
    • /
    • 2004
  • An automatic pronunciation correction system provides learners with correction guidelines for each mispronunciation. For this purpose we develope a speech recognizer which automatically classifies pronunciation errors when Koreans speak a foreign language. In order to develope the methods for automatic assessment of pronunciation quality, we propose a language model based score as a machine score in the speech recognizer. Experimental results show that the language model based score had higher correlation with human scores than that obtained using the conventional log-likelihood based score.

  • PDF

Robust Radiometric and Geometric Correction Methods for Drone-Based Hyperspectral Imaging in Agricultural Applications

  • Hyoung-Sub Shin;Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.

The correction of Lens distortion based on Image division using Artificial Neural Network (영상분할 방법 기반의 인공신경망을 적용한 카메라의 렌즈왜곡 보정)

  • Shin, Ki-Young;Bae, Jang-Han;Mun, Joung-H.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.31-38
    • /
    • 2009
  • Lens distortion is inevitable phenomenon in machine vision system. More and more distortion phenomenon is occurring in order to choice of lens for minimizing cost and system size. As shown above, correction of lens distortion is critical issue. However previous lens correction methods using camera model have problem such as nonlinear property and complicated operation. And recent lens correction methods using neural network also have accuracy and efficiency problem. In this study, I propose new algorithms for correction of lens distortion. Distorted image is divided based on the distortion quantity using k-means. And each divided image region is corrected by using neural network. As a result, the proposed algorithms have better accuracy than previous methods without image division.