질의응답 시스템이 올바른 답변을 제시하기 위해서는 사용자의 의도를 정확하고 강건하게 파악하는 것이 매우 중요하다. 이러한 요구 사항을 만족시키기 위해서 본 논문에서는 실용적 실의응답 시스템을 위한 질의 유형 분류기를 제안한다 제안된 실의 유형 분류기는 규칙 기반의 방법과 통계 기반의 방법을 접목시킨 하이브리드 방법을 사용한다. 제안된 방법을 사용함으로써 수동으로 규칙을 작성하는 시간을 줄일 수 있었고 정확률을 향상시킬 수 있었으며 안정성을 보장받을 수 있었다 제안된 방법에 대한 실험에서 질의 유형을 분류하는데 80%의 정확률을 얻었다.
The text categorization is an important field for the automatic text information processing. Moreover, the authorship identification of a text can be treated as a special text categorization. This paper adopts the conceptual primitives' expression based on the Hierarchical Network of Concepts (HNC) theory, which can describe the words meaning in hierarchical symbols, in order to avoid the sparse data shortcoming that is aroused by the natural language surface features in text categorization. The KNN algorithm is used as computing classification element. Then, the experiment has been done on the Chinese text authorship identification. The experiment result gives out that the processing mode that is put forward in this paper achieves high correct rate, so it is feasible for the text authorship identification.
In this paper, we propose a stroke matching method for the off-line recognition of handprinted Hangul. In this method, the preprocessing steps such as position normalization, contour tracing and thinning are carried out first. Then, after extracting features such as the firection component distribution of contour, the direction component distribution of skeleton, and the distribution of structural feature points, strokes are extracted and matched based on the midpont distribution of the direction and the length of each stroke. In order to reduce the recognition time, a preliminary classification based on the direction component distribution features of the contour is performed. In order to domonstrate the performance of the proposed method, experiments with 520 most frequently used Hangul were performed, and 90.7% of correct recognition rate and 0.46second of recognition time per one character has been obtained. This results reveal that the proposed method can absorb effectively the noise in input character and the variations of stroke slant.
국민연금의 효율적인 운영을 위하여 고령화, 저출산과 같은 사회현상에 대비한 연금 관리를 위한 연구가 요구되고 있다. 본 연구는 유족연금의 발생을 예측하고 유족연금의 발생가능성 정도에 따라 대상자들을 분류하기 위한 통계적 모델을 제안하기 위하여 두 단계의 로지스틱 분석을 실시하였다. 첫 단계의 분석으로부터, 전체 대상자에 대하여 유족연금의 발생에 영향을 주는 주요인의 특성과 국민연금의 종류를 파악하고 이를 대상으로 유족연금의 발생에 대한 로지스틱 회귀모형을 적용하되 대상자를 합리적으로 등급화하기 위한 모델을 제안하고 이를 일반적인 로지스틱모델과 비교하였다. 정확도, 민감도, 특이도와 사후 확률의 분포를 비교하고 K-S통계량을 통하여 등급의 타당성 평가와 리프트 그래프를 통한 모델의 예측력평가를 함으로써 합리적 등급분류를 통한 대상자관리가 가능한 통계적 모델임을 보였다. 예측된 통계적 모델을 적용하여 유족연금 수급유무와 등급별 분류, 등급에 따른 유족연금액 예측을 통하여 효율적인 연금관리 방안을 제안할 수 있다.
도로기하구조정보는 도로의 안전성평가 및 도로의 유지관리를 위한 필수적인 요소이다. 본 연구에서는 GPS(Global Positioning System)/INS(Inertial Navigation System)센서가 탑재된 조사차량을 이용하여 기하구조정보를 수집하였으며, 수집된 차량의 자세정보 중 평면선형과 관련된 Roll, Heading 자료를 이용하여 직선, 원곡선, 완화곡선을 구분하는 알고리즘을 개발하였다. 본 연구에서는 평면선형 인식 이전에 전처리 과정으로 이동평균법을 통하여 자료를 평활화함으로써 원시자료의 이상치를 제거하여 평면선형 인식의 신뢰성을 제고하였다. 유전알고리즘(GA, Genetic Algorithm)을 이용하여 분류정확도(CCR, Correct Classification Rate)를 최대로 하는 알고리즘 파라미터를 설정한 결과 100%의 분류정확도를 보였다. 설정된 파라미터를 이용하여 고속도로와 국도 주행자료를 이용하여 알고리즘을 평가한 결과 90.48%와 88.24%의 분류정확도를 보여, 제안된 평면선형인식 알고리즘은 현장에서 적용 시 높은 신뢰도를 가지는 정보를 제공 가능한 것으로 분석되었다. 본 연구에서 개발한 평면선형인식 알고리즘은 조사차량에 GPS/INS센서의 소프트웨어로 탑재되어 도로 및 교통기술자에게 도로기하구조정보를 보다 용이하게 수집하고 분석할 수 있는 환경을 제공하는데 기여할 것으로 기대된다.
본 연구는 듀이십진분류표의 인쇄형과 전자형 비교 및 이용 연구로 60명의 문헌정보학과 학생들을 대상으로 실시한 분류기호 작성에 관해 기술하고 있다. 4개의 다른 난이도로 이루어진 자료를 프로그램화된 듀이십진분류표 소개 책자로부터 선정하여 간단한 교육과 훈련을 하고 난후에 2문제씩 1차와 2차로 나누어 분류기호를 만들어 보게 하였다. 분류기호 작성 시간을 측정하고 분류과정과 결과 및 소요 시간을 기록하였다. 정확한 분류기호의 작성이 전자분류표의 사용에서 보다 신속하게 이루어졌지만 인쇄분류표를 사용한 학생들이 보다 많은 정확한 분류기호를 제공하였다. 또한 전자분류표의 인터페이스와 시스템 사양을 학생들이 제대로 적용하지 못했음에도 불구하고 인쇄분류표보다 전자분류표를 사용하면서 분류 작업에 더 많은 흥미를 느낀 것으로 나타났다. 영어 성적과 분류결과 성적의 상관관계를 측정한 결과ㅏ, 인쇄형으로 시작한 반은 부정적인 관계로까지 나왔고, 전자형으로 시작한 반은 극히 낮은 정적 관계로 나타났다. 총평점과 분류 결과 성적과도 아주 미약한 정적 관계만이 있었고 분류 소요 시간과 분류 결과 성적은 오히려 부정적인 관 瓮\ulcorner나타났다.
본 연구에서는 고속도로에서 GPS(Global Positioning System)수신기를 장착한 프로브차량을 이용하여 수집한 속도자료를 이용하여 사고 위험구간을 추출하는 방법론을 제시하였다. 위험구간 추출을 사고발생 유 무를 판단하는 분류문제(Classification)로 정형화하고 베이지안 신경망을 적용하였다. 개별차량의 속도자료를 이용하여 다양한 잠재적 독립변수를 설정하고 이항 로지스틱 회귀분석을 이용하여 통계적으로 유의미한 변수만을 추출하여 베이지안 신경망의 입력자료로 사용하였다. 제안된 방법론의 성능 평가를 위해 사고 발생 경험이 있는 위험구간을 정확히 추출하는 분류정확도를 효과척도로 활용하였다. 본 연구에서 제안한 방법론의 타당성을 60%의 분류정확도를 통해 확인할 수 있었다. 고속도로 신설노선의 교통안전성을 평가하고 사고예방을 위한 대응책 개발 및 적용에 본 연구의 결과가 효과적으로 활용될 것으로 기대된다.
Background: We aimed to explore the American College of Rheumatology (ACR) 1990 and 2011 fibromyalgia (FM) classification criteria's items and the components of Fibromyalgia Impact Questionnaire (FIQ) to identify features best discriminating FM features. Finally, we developed a combined FM diagnostic (C-FM) model using the FM's key features. Methods: The means and frequency on tender points (TPs), ACR 2011 components and FIQ items were calculated in the FM and non-FM (osteoarthritis [OA] and non-OA) patients. Then, two-step multiple logistic regression analysis was performed to order these variables according to their maximal statistical contribution in predicting group membership. Partial correlations assessed their unique contribution, and two-group discriminant analysis provided a classification table. Using receiver operator characteristic analyses, we determined the sensitivity and specificity of the final model. Results: A total of 172 patients with FM, 75 with OA and 21 with periarthritis or regional pain syndromes were enrolled. Two steps multiple logistic regression analysis identified 8 key features of FM which accounted for 64.8% of variance associated with FM group membership: lateral epicondyle TP with variance percentages (36.9%), neck pain (14.5%), fatigue (4.7%), insomnia (3%), upper back pain (2.2%), shoulder pain (1.5%), gluteal TP (1.2%), and FIQ fatigue (0.9%). The C-FM model demonstrated a 91.4% correct classification rate, 91.9% for sensitivity and 91.7% for specificity. Conclusions: The C-FM model can accurately detect FM patients among other pain disorders. Re-inclusion of TPs along with saving of FM main symptoms in the C-FM model is a unique feature of this model.
Purpose The purpose of this study is to develop a prediction model and decision rules for the elderly's suicidal ideation based on the Korean Welfare Panel survey data. By utilizing this data, we obtained many decision rules to predict the elderly's suicide ideation. Design/methodology/approach This study used classification analysis to derive decision rules to predict on the basis of decision tree technique. Weka 3.8 is used as the data mining tool in this study. The decision tree algorithm uses J48, also known as C4.5. In addition, 66.6% of the total data was divided into learning data and verification data. We considered all possible variables based on previous studies in predicting suicidal ideation of the elderly. Finally, 99 variables including the target variable were used. Classification analysis was performed by introducing sampling technique through backward elimination and data balancing. Findings As a result, there were significant differences between the data sets. The selected data sets have different, various decision tree and several rules. Based on the decision tree method, we derived the rules for suicide prevention. The decision tree derives not only the rules for the suicidal ideation of the depressed group, but also the rules for the suicidal ideation of the non-depressed group. In addition, in developing the predictive model, the problem of over-fitting due to the data imbalance phenomenon was directly identified through the application of data balancing. We could conclude that it is necessary to balance the data on the target variables in order to perform the correct classification analysis without over-fitting. In addition, although data balancing is applied, it is shown that performance is not inferior in prediction rate when compared with a biased prediction model.
General Administrative Procedures of the Preshipment Inspection 1. Initial notification Preshipment Inspection is initiated by Agency when it receives notice either from the importing country, or the seller, that an export needs to be imspected 1.1 Notice from the importing country 1.2 Notice from the seller 2. Preliminary price verification After receipt of initial notification, Agency undertakes, Where possible, a preliminary price verification, based upon the Inspection Order and other contractual documents received. 3. Customs classification When required by the Government of the importing country. Agency forms an opinion of the Customs Classification Code based upon the Customs Tariff Book and Rules of Classification of the country of importation. The Customs Classification Code determines the tariff rate on the basis of which the importer will be required to pay import duties. 4. Import eligibility 5. Arrangements for physical inspection 5.1 Inspection request from seller 5.2 Place of inspection 5.3 Date of inspection 5.4 Physical inspection procedures 6. Physical inspection results When the physical inspection is completed, the inspector submits his report to the Agency office and the result of inspection will be communicated to the seller and, where applicable, the place of inspection. The result will state: satisfactory or conditional of unsatisfactory. The seller is welcome to present his views in writting to Agency in the event there is any query regarding the issuance of a conditional of unsatisfactory inspection result. 6.1 Satisfactory 6.2 Conditional 6.3 Unsatisfactory 7. Shipment of the goods The seller is advised to check with Agency prior to shipment if the physical inspection result has not been received or there are any doubts concerning whether a Clean Report of Findings will be issued. 8. Final price verification and classification Based on the results of physical inspection and appropriate final documents, Agency finalises the price verification and the Agency opinion of Customs classification code. When the preliminary price verification has not resulted in any unresolved questions and the inspection result and other documents received are consistent with the preliminary documentation, Agency will not normally require any additional information. The main exception would be if the terms of sale require reference to prices at the date of shipment. 9. The Report of Findings 9.1 Types of Reports of Findings - Clean Reports of Findings(CRF) The Agency will issue a Clean Reports of Findings(CRF), or equivalent document, normally within two working days after receipt of the necessary correct final documents and a satisfactory result in all aspects of the inspection. - Discrepancy Report.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.