International Journal of Advanced Culture Technology
/
제10권1호
/
pp.204-210
/
2022
From the 1970s to the present, the number of new infectious diseases such as SARS, Ebola virus, and MERS has steadily increased. The new infectious disease, COVID-19, which began in Wuhan, Hubei Province, China, has pushed the world into a pandemic era. As a result, Countries imposed restrictions on entry to foreign countries due to concerns over the spread of COVID-19, which led to a decrease in the movement of tourists. Due to the restriction of travel, keywords such as "Corona blue" have soared and depression has increased. Therefore, this study aims to analyze the stress meaning network of the COVID-19 era to derive keywords and come up with a plan for a travel-related platform of the Post-COVID 19 era. This study conducted analysis of travel and stress caused by COVID-19 using TEXTOM, a big data analysis tool, and conducted semantic network analysis using UCINET6. We also conducted a CONCOR analysis to classify keywords for clustering of words with similarities. However, since we have collected travel and stress-oriented data from the start to the present, we need to increase the number of analysis data and analyze more data in the future.
International Journal of Computer Science & Network Security
/
제21권1호
/
pp.192-200
/
2021
In the mid of the December 2019, the virus has been started to spread from China namely Corona virus. It causes fatalities globally and WHO has been declared as pandemic in the whole world. There are different methods which can fit such types of values which obtain peak and get flattened by the time. The main aim of the paper is to find the best or nearly appropriate modeling of such data. The three different models has been deployed for the fitting of the data of Coronavirus confirmed patients in Pakistan till the date of 20th November 2020. In this paper, we have conducted analysis based on data obtained from National Institute of Health (NIH) Islamabad and produced a forecast of COVID-19 confirmed cases as well as the number of deaths and recoveries in Pakistan using the Logistic model, Gompertz model and Auto-Regressive Integrated Moving Average Model (ARIMA) model. The fitted models revealed high exponential growth in the number of confirmed cases, deaths and recoveries in Pakistan.
본 연구의 자료처리는 '코로나 19와 프로야구', '코로나 19와 프로야구 무관중'과 관련된 키워드를 중심으로 텍스톰(textom)프로그램의 텍스트마이닝과 소셜네트워크 분석을 활용해 문제점 도출 및 시청품질의 변인을 설정하는데 활용하였다. 정량적 분석을 위해 시청품질에 관한 설문지를 구성하였으며, 270부의 설문응답자 중 250부의 설문을 최종연구에 사용하였다. 설문지의 타당도와 신뢰도를 확보하기 위한 도구로 탐색적 요인 분석과 신뢰도 분석을 실시하였으며, 타당도와 신뢰도가 확보된 설문을 바탕으로 IPA분석(중요도-만족도)을 실시하여 결과 및 전략을 제시하였다. IPA분석을 실시한 결과 1사분면에 영상과 관련된 요인(영상구성, 영상배색, 영상 선명도, 영상 확대 및 구도, 고음질 영상)이 나타났고 2사분면은 경기상황(응원 팀 경기수준, 응원 선수 경기수준, 스타선수 발굴, 라이벌 팀과의 경기)과 경기정보(경기일정 안내, 선수정보 확인, 팀 성적 및 선수성적, 경기정보), 상호작용(응원팀과의 공감대) 일부의 요인이 나타났으며, 3사분면은 해설자(야구관련 지식, 의사전달 능력, 발음과 목소리, 표준어 사용, 경기관련 정보 소개)와 상호작용(프런트와 실시간 소통, 시청자와의 공감대, 채팅 등의 정보교환)의 요인이 나타났다.
This paper proposes a novel pattern recognition approach based on the radial basis function (RBF) neural network for identifying insulation defects of high-voltage electrical apparatus arising from partial discharge (PD). Pattern recognition of PD is used for identifying defects causing the PD, such as internal discharge, external discharge, corona, etc. This information is vital for estimating the harmfulness of the discharge in the insulation. Since an insulation defect, such as one resulting from PD, would have a corresponding particular pattern, pattern recognition of PD is significant means to discriminate insulation conditions of high-voltage electrical apparatus. To verify the proposed approach, experiments were conducted to demonstrate the field-test PD pattern recognition of cast resin current transformer (CRCT) models. These tests used artificial defects created in order to produce the common PD activities of CRCTs by using feature vectors of field-test PD patterns. The significant features are extracted by using nonlinear principal component analysis (NLPCA) method. The experimental data are found to be in close agreement with the recognized data. The test results show that the proposed approach is efficient and reliable.
본 연구는 전력계통의 절연에 가장 가혹한 영향을 미치는 뇌충격 전압에 대한 50% FOV와 V-t 특성 및 코로나 진전 과정을 불평등 전계중에서 순수 $SF_6, N_2, SF_6-N_2$혼합가스 분위기에서 연구하여 SF6-N2 혼합가스의 파괴과정과 경제적 실용 가능성에 대해서 검토하였다. 실험결과 $SF_6$ 50%-$N_2$ 50% 혼합가스의 50% FOV는 순수 $SF_6$의 80%보다 높다. 또 V-t 특성의 측정치와 등면적 법칙으로 계산된 곡선은 각 경우에 일치했다. 따라서 순수 $SF_6$에 대한 경제적 대체가스로서 SF6 50%-$N_2$ 50% 혼합가스가 사용되어질 수 있다는 것을 알 수 있었다. 또한 방전 도형을 이용한 코로나 진전과정 분석으로 이를 입증했다.
Partial discharge(PD) in air insulated electric power systems is responsible for considerable power lossesfrom high voltage transmission lines. PD in air often leads to deterioration of insulation by the combined action of the discharge ions bombarding the surface and the action of chemical compounds that are formed by the discharge and may give rise to interference in ommunication systems. PD can indicate incipient failure. Thus understanding and classification of PD in air is very important to discern source of PD. In this paper, we investigated PD in air by using statical method. We classified air discharge with corona, surface discharge and cavity discharge by source of discharge. we used the mean pulse-height phase distribution $H_{qmean}(\psi)$, the max pulse-height phase distribution $H_{qmax}(\psi)$ , the pulse count phase distribution $H_n(\psi)$ and the max pulse height vs. repetition rate $H_{q}(n)$ for analysis PD pattern. We used statistical operators, such as skewness(S+. S-1, kurtosis(K+, K-), mean phase(AP+. AP-), cross-correlation factor(CC) and asymmetry from the distribution.
International Journal of Computer Science & Network Security
/
제21권4호
/
pp.93-102
/
2021
The world is facing an unprecedented economic, social and political crisis with the spread of COVID-19. The Corona Virus (COVID-19) and its global spread have resulted in declaring a pandemic by the World Health Organization. The deadly pandemic of 21st century has spread its wings across the globe with an exponential increase in the number of cases in many countries. The developing and underdeveloped countries are struggling hard to counter the rapidly growing and widespread challenge of COVID-19 because it has greatly influenced the global economies whereby the underdeveloped countries are more affected by its devastating impacts, especially the life of the low-income population. Information and Communication Technology (ICT) were particularly useful in spreading key emergency information and helping to maintain extensive social distancing. Updated information and testing results were published on national and local government websites. Mobile devices were used to support early testing and contact tracing. The government provided free smartphone apps that flagged infection hotspots with text alerts on testing and local cases. The purpose of this research work is to provide an in depth overview of emerging technologies and recent ICT developments to combat COVID-19 Pandemic. Finally, the author highlights open challenges in order to give future research directions.
International Journal of Computer Science & Network Security
/
제22권1호
/
pp.225-233
/
2022
The recent outbreak of corona virus (COVID-19) infectious disease had made its forecasting critical cornerstones in most scientific studies. This study adopts a machine learning based time series model - Auto Regressive Integrated Moving Average (ARIMA) model to forecast COVID-19 confirmed cases in Botswana over 60 days period. Findings of the study show that COVID-19 confirmed cases in Botswana are steadily rising in a steep upward trend with random fluctuations. This trend can also be described effectively using an additive model when scrutinized in Seasonal Trend Decomposition method by Loess. In selecting the best fit ARIMA model, a Grid Search Algorithm was developed with python language and was used to optimize an Akaike Information Criterion (AIC) metric. The best fit ARIMA model was determined at ARIMA (5, 1, 1), which depicted the least AIC score of 3885.091. Results of the study proved that ARIMA model can be useful in generating reliable and volatile forecasts that can used to guide on understanding of the future spread of infectious diseases or pandemics. Most significantly, findings of the study are expected to raise social awareness to disease monitoring institutions and government regulatory bodies where it can be used to support strategic health decisions and initiate policy improvement for better management of the COVID-19 pandemic.
International Journal of Computer Science & Network Security
/
제24권7호
/
pp.195-201
/
2024
With the Covid-19(Corona Virus) spread all around the world, people are using this propaganda and the desperate need of the citizens to know the news about this mysterious virus by spreading fake news. Some Countries arrested people who spread fake news about this, and others made them pay a fine. And since Social Media has become a significant source of news, .there is a profound need to detect these fake news. The main aim of this research is to develop a web-based model using a combination of machine learning algorithms to detect fake news. The proposed model includes an advanced framework to identify tweets with fake news using Context Analysis; We assumed that Natural Language Processing(NLP) wouldn't be enough alone to make context analysis as Tweets are usually short and do not follow even the most straightforward syntactic rules, so we used Tweets Features as several retweets, several likes and tweet-length we also added statistical credibility analysis for Twitter users. The proposed algorithms are tested on four different benchmark datasets. And Finally, to get the best accuracy, we combined two of the best algorithms used SVM ( which is widely accepted as baseline classifier, especially with binary classification problems ) and Naive Base.
Shakeel Ahmed;Ahmad Shukri Mohd Noor;Wazir Zada Khan;Mohamed Saad Eldin Mohamed
International Journal of Computer Science & Network Security
/
제24권9호
/
pp.135-149
/
2024
This research aimed to promote the electronic evaluation tools to tackle the pandemic implications (corona, COVID-19) and analyze the attitude and academic acceptance at the level of the female student's in the department of computer science - faculty of computer science and information technology at Jazan University, Saudi Arabia. The student's attitude toward e-assessment tolls has been measured and the main research sample consisted of 40 students' experimental group. A survey is also conducted to the assessment of the validity and reliability of research questions with the help of 50 students before implementation. There was a statistically significant difference between students' average grades in the post-measurement of the tendency toward electronic evaluation of the experimental groups in favor of the experimental group, at the significance level (0.01). The results also showed a statistically significant difference at the level of significance (0.01) between average scores of students in academic acceptance level in the experimental groups in favor of the experimental group. The findings of this research indicate the achievement of the e-Evaluation Acceptance and are highly recommended to propagate the use of electronic evaluation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.