• 제목/요약/키워드: corner effect

검색결과 317건 처리시간 0.026초

양자가둠 효과를 포함한 Saddle MOSFET에서의 모서리효과의 분석과 억제방법 (Analysis and Suppression of the Corner Effect in a Saddle MOSFET Including Quantum Confinements Effects)

  • 셰드;김희상;라흐만;이종호;박병국;신형철
    • 대한전자공학회논문지SD
    • /
    • 제47권3호
    • /
    • pp.1-6
    • /
    • 2010
  • Saddle MOSFET의 모서리의 효과에 대한 고전역학과 양자역학적 시뮬레이션의 비교분석을 3차원 수치 시뮬레이터를 사용하여 수행하였다. 비교분석 결과 양자역학적 시뮬레이션에서는 실리콘 핀의 단면에서의 정확한 최대 전자 밀도의 위치와 크기를 제공함으로써 소자의 정확한 설명을 제공하는 것을 보여 주었고, 이를 이용하여 모서리 효과 및 그것이 소자의 문턱전압의 특성을 미치는 영향의 정확한 분석이 실행되었다. 또한, 모서리 효과를 억제하기 위해서 실리콘 핀의 모서리를 둥글게 하거나 구석의 바디도핑을 낮추는 두 가지 가능한 기법을 제시했다.

코너 출구속도가 직선주로 주행 소요시간에 미치는 영향 (Effect of Corner Exit Speed on the Time to Go Down a Straight)

  • 장성국
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.141-146
    • /
    • 2003
  • This paper calculates the elapsed time to go down a straight as a function of the corner exit speed and considers air resistance, rolling resistance, and slope resistance to figure out the force for forward acceleration. In a car racing, the most critical comer in a course is the one before the longest straight. A driver can lose a quite amount of time by taking a bad line in a corner. Taking a bad line also causes poor comer exit speed which in turn costs more elapsed time to go down a straight. The results are not so dramatic as in the case of cornering but are showing why one should take the correct corner racing line to get the maximum exit speed. Also, for the case of drag race, the elapsed time to go 1/4 mile is calculated.

V노치 또는 예리한 균열을 가지는 직사각형 평판의 굽힘 진동 (Flexural Vibrations of Rectangular Plates Having V-notches or Sharp Cracks)

  • 정희영;정의영;김주우
    • 한국소음진동공학회논문집
    • /
    • 제14권4호
    • /
    • pp.336-343
    • /
    • 2004
  • This paper reports the first known free vibration data for thin rectangular plates with V-notches. The classical Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. These sets include (1) mathematically complete algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained, and (2) corner functions which account for the bending moment singularities at the sharp reentrant corner of the Y-notch. Extensive convergence studies summarized herein confirm that the corner functions substantially enhance the convergence and accuracy of nondirectional frequencies for rectangular plates having the V-notch. In this paper, accurate frequencies and normalized contours of vibratory transverse displacement are presented for various notched plates, so that the effect of corner stress singularities may be understood.

원형봉에서 사각재 인발 공정의 코너 채움에 관한 연구 (A Study on the Corner Filling in the Drawing of Quadrangle Rod from Round Bar)

  • 김용철;김동진;김병민
    • 한국정밀공학회지
    • /
    • 제17권6호
    • /
    • pp.143-152
    • /
    • 2000
  • The comer filling in shaped drawing process is an important characteristic, unlike the round drawing. It has also influence on the dimensional accuracy of the product. In this study, therefore, the shaped drawing process has been simulated by the three dimensional rigid-plastic finite element method in order to investigate the effect of process variables such as reduction in area and semi-die angle to the corner filling. The artificial neural network has also been introduced to reduce the number of simulations. To verify the results of simulations, experiments have been performed on the real industrial products. According to the results, the main process variable on the corner filling is the combination of semi-die angle in the irregular shaped drawing processes, but in the case of regular shaped drawing processes, reduction in area has great influence on the corner filling.

  • PDF

Full-scale study of conical vortices and roof corner pressures

  • Wu, F.;Sarkar, P.P.;Mehta, K.C.
    • Wind and Structures
    • /
    • 제4권2호
    • /
    • pp.131-146
    • /
    • 2001
  • A full-scale synchronized data acquisition system was set up on the roof of the experimental building at the Texas Tech University Wind Engineering Research Field Laboratory to simultaneously collect approaching wind data, conical vortex images, and roof corner suction pressure data. One-second conditional sampling technique has been applied in the data analysis, which makes it possible to separately evaluate the influencing effects of the horizontal wind angle of attack, ${\theta}$, and the vertical wind angle of attack, ${\varphi}$. Results show a clear cause-and-effect relationship between the incident wind, conical vortices, and the induced roof-corner high-suction pressures. The horizontal wind angle of attack, ${\theta}$, is shown to be the most significant factor in influencing the overall vortex structure and the suction pressures beneath. It is further revealed that the vertical wind angle of attack, ${\varphi}$, plays a critical role in generating the instantaneous peak suction pressures near the roof corner.

회전체 원판의 볼트구멍에 존재하는 모서리균열의 유한요소해석 (Finite Element Analysis of a Rotating Disc with a Corner Crack Originating at the Bolt Holes)

  • 한상배;이진호;김영진
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3055-3062
    • /
    • 1993
  • The objective of this paper is to obtain stress intensity factor solutions for a corner crack originating at bolt holes in a rotating disc. Initially two-dimensional finite element analyses of a rotating disc with bolt holes are performed to determine the maximum stress region. Subsequently three-dimensional finite element analyses of a rotating disc with a corner crack originating at the bolt holes are performed with a variety of crack geometries. According to the numerical results, the maximum stress intensity factor, with an increase in crack depth ratio, was observed at the surface of the plate due to the interference effect of corner crack and disc bore.

Experimental investigation of the stress-strain behavior of FRP confined concrete prisms

  • Hosseinpour, F.;Abbasnia, R.
    • Advances in concrete construction
    • /
    • 제2권3호
    • /
    • pp.177-192
    • /
    • 2014
  • One of the main applications of FRP composites is confining concrete columns. Hence identifying the cyclic and monotonic stress-strain behavior of confined concrete columns and the parameters influencing this behavior is inevitable. Two significant parameters affecting the stress-strain behavior are aspect ratio and corner radius. The present study aims to scrutinize the effects of corner radius and aspect ratio on different aspects of stress-strain behavior of FRP confined concrete specimens (rectangular, square and circular). Hence 44 FRP confined concrete specimens were tested and the results of the tests were investigated. The findings indicated that for specimens with different aspect ratios, the relationship between the ultimate stress and the corner radius is linear and the variations of the ultimate stress versus the corner radius decreases as a result of an increase in aspect ratio. It was also observed that increase of the corner radius results in increase of the compressive strength and ultimate axial strain and increase of the aspect ratio causes an increase of the ultimate axial strain but a decrease of the compressive strength. Investigation of the ultimate condition showed that the FRP hoop rupture strain is smaller in comparison with the one obtained from the tensile coupon test and also the ultimate axial strain and confined concrete strength are smaller when a prism is under monotonic loading. Other important results of this study were, an increase in the axial strain during the early stage of unloading paths and increase of the confining effect of FRP jacket with the increase and decrease of the corner radius and aspect ratio respectively, a decrease in the slope of reloading branches with cycle repetitions and the independence of this trend from the variations of the aspect ratio and corner radius and also quadric relationship between the number of each cycle and the plastic strain of the same cycle as well as the independence of this relationship from the aspect ratio and corner radius.

Wind-induced Aerodynamic Instability of Super-tall Buildings with Various Cross-sectional Shapes

  • Kim, Wonsul;Yoshida, Akihito;Tamura, Yukio
    • 국제초고층학회논문집
    • /
    • 제8권4호
    • /
    • pp.303-311
    • /
    • 2019
  • The effectiveness of aerodynamic modification to reduce wind loadings has been widely reported. However, most of previous studies have been investigated dynamic forces and pressure distributions on tall buildings with various unconventional configurations. This study was investigated dynamic characteristics and aerodynamic instability of super-tall buildings with unconventional configurations through extensive aeroelastic model experiments. Seventeen types of supertall building models were considered such as basic and corner modification with corner cut, chamfered, oblique opening, tapered, inversely tapered, bulged, helical with twist angles of $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, $360^{\circ}$ and composite with $360^{\circ}$ helical & corner cut, 4-tapered & $360^{\circ}$ helical & corner cut, setback & corner cut, setback & $45^{\circ}$ rotate. As a result, aerodynamic characteristics of helical models with single modification are superior to those of other models with single modification. However, effect of twist angle for helical model is negligible. Further, the 4-tapered & $360^{\circ}$helical & corner cut model is most effective in reducing the along- and across-wind fluctuating displacement responses in all of experimental models.

Criteria for processing response-spectrum-compatible seismic accelerations simulated via spectral representation

  • Zerva, A.;Morikawa, H.;Sawada, S.
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.341-363
    • /
    • 2012
  • The spectral representation method is a quick and versatile tool for the generation of spatially variable, response-spectrum-compatible simulations to be used in the nonlinear seismic response evaluation of extended structures, such as bridges. However, just as recorded data, these simulated accelerations require processing, but, unlike recorded data, the reasons for their processing are purely numerical. Hence, the criteria for the processing of acceleration simulations need to be tied to the effect of processing on the structural response. This paper presents a framework for processing acceleration simulations that is based on seismological approaches for processing recorded data, but establishes the corner frequency of the high-pass filter by minimizing the effect of processing on the response of the structural system, for the response evaluation of which the ground motions were generated. The proposed two-step criterion selects the filter corner frequency by considering both the dynamic and the pseudo-static response of the systems. First, it ensures that the linear/nonlinear dynamic structural response induced by the processed simulations captures the characteristics of the system's dynamic response caused by the unprocessed simulations, the frequency content of which is fully compatible with the target response spectrum. Second, it examines the adequacy of the selected estimate for the filter corner frequency by evaluating the pseudo-static response of the system subjected to spatially variable excitations. It is noted that the first step of this two-fold criterion suffices for the establishment of the corner frequency for the processing of acceleration time series generated at a single ground-surface location to be used in the seismic response evaluation of, e.g. a building structure. Furthermore, the concept also applies for the processing of acceleration time series generated by means of any approach that does not provide physical considerations for the selection of the corner frequency of the high-pass filter.

사출금형의 러너시스템 형상에 따른 균형 충전도 (Degree of Filling Balance according to Runner Shapes in Injection Mold)

  • 한동엽;정영득
    • 한국정밀공학회지
    • /
    • 제25권10호
    • /
    • pp.144-149
    • /
    • 2008
  • Configuration of filling imbalance which is originated from imbalanced share rate of melt on runner is changed by runner layout, runner shape, material property, injection pressure, injection speed, melt temperature and mold temperature. In this paper, we conducted a study of runner layout and shape that are main factors of filling imbalance. Other factors such as the sharp corner effect and the groove corner effect are recently released were also considered. The results of study are showed that filling rate of between inside and outside cavity was influenced on shape of runner. Especially, this study suggests a new runner system for filling balance by adapting the two effects of unary branch type runner at multi cavity mold and theoretical investigated flow in the sharp corner type runner.