• Title/Summary/Keyword: copper-free

Search Result 316, Processing Time 0.028 seconds

Microstructure and Mechanical Properties of Oxygen Free Copper Processed by ARB at Low Strain Rate (저변형률속도에서 ARB가공된 무산소동의 미세조직 및 기계적 성질)

  • Lee, Seong-Hee;Han, Seung-Zeon;Lim, Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.17 no.10
    • /
    • pp.521-525
    • /
    • 2007
  • The microstructure and mechanical properties of an oxygen free copper processed by accumulative roll bonding(ARB) at low strain rate were studied. The copper sheets were highly strained up to an equivalent strain of ${\sim}6.4$ by ARB process at ambient temperature. The strain rate of the copper during the ARB was $2.6sec^{-1}$. The microstructure and mechanical properties of the ARB-processed copper were compared to those of the specimens processed by ARB at relatively high strain rate ($37sec^{-1}$). The microstructure and mechanical properties of the copper with ARB process was very similar to each other despite of some differences in recovery.

A Study on Semi Abrasive Free Slurry including Acid Colloidal Silica for Copper Chemical Mechanical Planarization (구리 CMP 적용을 위한 산성 콜로이드 실리카를 포함한 준무연마제 슬러리 연구)

  • 김남훈;김상용;서용진;김태형;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.272-277
    • /
    • 2004
  • The primary aim of this study is to investigate new semi-abrasive free slurry including acid colloidal silica and hydrogen peroxide for copper chemical-mechanical planarization (CMP). In general, slurry for copper CMP consists of colloidal silica as an abrasive, organic acid as a complex-forming agent, hydrogen peroxide as an oxidizing agent, a film forming agent, a pH control agent and several additives. We developed new semi-abrasive free slurry (SAFS) including below 0.5% acid colloidal silica. We evaluated additives as stabilizers for hydrogen peroxide as well as accelerators in tantalum nitride CMP process. We also estimated dispersion stability and Zeta potential of the acid colloidal silica with additives. The extent of enhancement in tantalum nitride CMP was verified through anelectrochemical test. This approach may be useful for the application of single and first step copper CMP slurry with one package system.

Rapid Fabrication of Bi2212 Superconducting Films on Cu Tape with Cu-free Precursor (Cu-free 전구체를 이용한 동 테이프 위의 Bi2212 초전도 후막의 급속 제조)

  • 한상철;성태현;한영희;이준성;김상준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.69-72
    • /
    • 1999
  • A Well oriented Bi$_2$re$_2$CaCu$_2$O$\sub$8/(Bi2212) superconductor thick films were formed successfully on a copper substrate by liquid reaction between a Cu-free precursor and Cu tape using method in which Cu-free BSCO powder mixture was printed on copper plate and heat-treated. And we examined the mechanism for the rapid formation of Bi2212 superconducting films from observing the surface microstructure with heat-treatment time. At heat-treatment temperature, the printing layer partially melt by reacting with CuO of the oxidizing copper plate, and the nonsuperconducting phases present in the melt are typically Bi-free phases and Cu-free phases. Following the partial melting, the Bi$_2$Sr$_2$CaCu$_2$O$\sub$8/ superconducting phase is formed at Bi-free phase/liquid interface by nucleation and grows. It was confirmed that the phase colony from the phase diagram of Bi$_2$O$_3$-(SrO+CaO)/2-CuO system is similar to the observed result.

  • PDF

Development of Forging Parts for Solar Electrode Body Using Oxygen-Free Copper Material (무산소동 소재를 활용한 태양광 일렉트로드 바디 단조 부품 개발)

  • Park, Dong-Hwan;Tak, Yun-Hak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.28-35
    • /
    • 2016
  • Forging operations are non-stationary processes occurring because of indirect pressure, generally, under conditions of three-dimensional stress and deformation. Furthermore, due to friction and the constraints of die geometry, deformation is not homogeneous. Material flow and deformation are largely determined by the shape of the tools. It is well known that net-shape forging can improve the mechanical strength of the final product as well as reduce material waste. Oxygen-free copper that is used for electrical and electronic components has excellent electrical and thermal conductivity. Oxygen-free copper parts have a low productivity in cutting process. Thus, the forging process is performed in order to improve the low productivity in cutting process. The forging of oxygen-free copper for electrode body parts was modeled using finite element simulation and forging experiments that were conducted for producing electrode body parts at room temperature. In order to reduce the cost of cutting products, the forging was performed in a closed cavity to obtain near-net or net-shape parts.

The Effect of the precursor powder composition for Bi-system superconducting thick films on Cu tapes (동테이프 위의 Bi-계 초전도 후막에서 전구체분말 조성의 영향)

  • 한상철;성태현;한영희;이준성;김상준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.65-68
    • /
    • 1999
  • A well oriented Bi2212 superconductor thick films were fabricated by screen printing with a Cu-free Bi-Sr-Ca-O mixture powder on a copper plate and heat-treating at 820-88$0^{\circ}C$ for several minute in air. During the heat-treatment, the printing layer partially melted by reaction between the Cu-free precursor and CuO of the oxidizing copper plate. In the partial melting state, it is believed that the solid phase is Bi-free phase and Cu-rich phase and the composition of the liquid is around Bi : Sr : Ca : Cu = 2 : 2 : 0 : 1. Following the partial melting, the Bi2212 superconducting phase is formed at Bi-free phase/liquid interface by nucleation and grows. With decreasing the Bi composition in the precursor powder, the critical temperature(T$_{c}$) of the fabricated Bi2212 thick film increased to about 79 K.K.

  • PDF

Annealing Characteristics of Oxygen Free Copper Severely Deformed by Accumulative Roll-Bonding Process (ARB법에 의해 강소성가공된 무산소동의 어닐링 특성)

  • Lee Seong-Hee;Cho Jun;Lee Chung-Hyo;Han Seung-Zun;Lim Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.555-559
    • /
    • 2005
  • An oxygen free copper severely-deformed by eight cycles (an equivalent strain of $\~6.4$) of accumulative roll-bonding (ARB) was annealed at various temperatures ranging from 100 to $300^{\circ}C$. The annealed copper was characterized by transmission electron microscopy (TEM) and tensile & hardness test. TEM observation revealed that the ultrafine grains developed by the ARB still remained up to $150^{\circ}C$, however above $200^{\circ}C$ they were replaced by equiaxed and coarse grains due to an occurrence of the static recrystallization. Tensile strength and hardness of the copper decreased slightly with the annealing temperature up to $150^{\circ}C$, however they dropped largely above $200^{\circ}C$. Annealing characteristics of the copper were compared with those of a commercially pure aluminum processed by ARB and subsequently annealed.

Effects of Selenium, Copper and Magnesium on Antioxidant Enzymes and Lipid Peroxidation in Bovine Fluorosis

  • Han, Bo;Yoon, Soonseek;Su, Jingliang;Han, H.R.;Wang, Mei;Qu, Weijie;Zhong, Daibin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1695-1699
    • /
    • 2004
  • The antioxidant enzymes, lipid peroxidation and free radicals assessment were made of the effects of selenium, copper and magnesium on bovine endemic fluorosis under high fluoride, low selenium and low copper productive conditions. Thirty-two beef cattle were selected from high fluoride area, and randomly divided into four groups with eight cattle each as follows: (1) high fluoride control group (HFC); (2) supplemented group with 0.25 mg/kg selenium (HFSe); (3) supplemented group with 15 mg/kg copper (HFCu) and (4) supplemented group with 0.25 mg/kg selenium+15 mg/kg copper+1 mg/kg magnesium (HFSeCuMg) per day for 83 days. Moreover, eight beef cattle were selected from non-high fluoride area as normal control group. Blood samples were collected from cattle on 0 d, 30 d and 83 d respectively, to analyze the enzyme activities and concentration of GSH-px, CAT, SOD, MDA and free radicals. The results showed that the contents of free radicals and MDA in HFC group were significantly higher, and the whole blood GSH-px, CAT, erythrocyte SOD activities were lower than the normal control group. Free radicals, metabolic imbalance and antioxidant disorder therefore, play an important role in fluorosis. However, GSH-px, CAT and SOD activities in HFSe group and HFSeCuMg group at 30 d and 83 d were markedly higher than the same groups at the 0 d and the HFC group at the same time. Likewise, there was a corresponding reduction in the contents of free radicals and MDA. These findings indicated that supplementation with selenium, copper and magnesium elevated high fluoride bovine antioxidant enzymes, and decreased MDA and free radicals contents. But, the activities of supplementation selenium group did not increase until day 83. These results demonstrated that fluorosis was associated with lower serum Se and Cu levels than in the control, and it was therefore concluded that fluorosis is associated with decreased serum levels of these minerals. Long-term high fluoride intake under productive condition enhances oxidative stress in the blood, thereby disturbing the antioxidant defense of cattle. Increased oxidative stress could be one of the mediating factors in the pathogenesis of toxic manifestations of fluoride. It is benefical for high fluoride cattle supplemented with proper selenium, copper and magnesium to increase fluoride excretion and obtain the protective impact of the activity of oxidative enzymes, and to decrease lipid peroxidation and free radicals contents.

Effects of Copper and Copper-Alloy on Friction and Wear Characteristics of Low-Steel Friction Material (로우스틸 마찰재의 마찰 및 마모특성에 미치는 구리계 재료의 영향)

  • Jung, Kwangki;Lee, Sang Woo;Kwon, Sungwook;Choi, Sungwoo;Lee, Heeok
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.207-214
    • /
    • 2020
  • In this study, we investigated the effects of copper and copper-alloy on the frictional and wear properties of low-steel friction material. The proportions of copper and copper-alloy in the brake friction materials used in passenger cars are very high (approximately 5-20% weight), and these materials have significant effects on friction and wear characteristics. In this study, the effects of cupric ingredients, such as the copper fiber and brass fiber, are investigated using the friction materials based on commercial formulations. After the copper and brass fibers from the same formulation were removed, the frictional and wear characteristics were evaluated to determine the influence of the copper and copper-alloy. We evaluated the frictional and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The results show that the friction material containing copper and brass fibers have excellent frictional stability and a low wear rate compared to the friction material that does not contain copper and brass fibers. These results are attributed to the excellent ductility, moderate melting point, high strength, and excellent thermal conductivity of copper and copper-alloy. We analyzed the surfaces of the friction materials before and after the performing the friction tests using a scanning electron microscope-energy dispersive X-ray spectroscope, confocal microscope, and roughness tester to verify the frictional behavior of copper and copper-alloy. In future studies, it will be applied to the development of copper-free friction materials based on the results of this study.

Microstructures and Mechanical Properties of Friction Stir Welds of Oxygen Free Copper (FSW에 의한 무산소동 접합부의 조직 및 기계적 성질)

  • Park Hwa-Soon;Lee Byung-Woo
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.77-85
    • /
    • 2005
  • The structures and mechanical properties of friction stirred welds of oxygen free copper(OFC) sheet were investigated. Defect-free welds were obtained in a relatively wide range of the welding conditions from 1000 to 2000 rpm, and welding speed from 500 to 2000 mm/min. The microstructure of the stirred zone(SZ) showed recrystallized grains, and the gram size varied largely with the welding conditions. The SZ hardness values including those of all the optimum welding conditions were slightly lower than that of the base metal, and increased with decreasing heat input. The tensile strength of the all-SZ increased with increasing the hardness values. The Hall-Fetch relationship was confirmed between the yield strength of the all-52 and the recrystallized grain size of the SZ.