• Title/Summary/Keyword: copper toxicity

Search Result 141, Processing Time 0.028 seconds

A Case Study for Intergrated Pest Management of Frankliniella occidentalis and Aphis gossypii by Simultaneously Using Orius laevigatus and Aphidius colemani with Azoxystrobin in Cucumber Plants (시설오이에서 azoxystrobin, 미끌애꽃노린재, 콜레마니진디벌을 이용한 꽃노랑총채벌레와 목화진딧물 종합관리 사례)

  • Choi, Yong-Seok;Whang, In-Su;Han, Ik-Soo;Kim, Young-Chil;Choe, Gwang-Ryul
    • Korean journal of applied entomology
    • /
    • v.52 no.4
    • /
    • pp.379-386
    • /
    • 2013
  • Aphidius colemani and Orius laevigatus aree natural enemies of the control cotton aphid and western flower thrips, which are the major pests of cucumber plants. We evaluated the low toxicity of 47 fungicides against A. colemani and O. laevigatus, and we investigated the simultaneous effect of the natural enemies with fungicide of low toxicity on the pests. The toxicity of DBEDC, hexaconazole, pyraclostrobin, tribasic copper sulfate, triflumizole, chlorothalonil, flusilazole, folpet, carbendazim+diethofencarb, cymoxanil+fenamidone and trifloxystrobin to A. colemani mummies was more than 50% and to O. laevigatus was low toxic. Among the fungicides with low toxicity, azoxystrobin 20% WP was selected because it could be used simultaneously with A. colemani and O. laevigatus and as a fungicide to control powdery mildew and downy mildew. In 2011, the densities of western flower thrips and cotton aphid increased rapidly in early-May in Gongju and Cheonan, Chungnam Province. When azoxystrobin was used at an interval of 10 days in spring, A. colemani and O. laevigatus were released at an interval of 7 days at the early occurrence of the pests. The natural enemies decreased the densities of the pests; the maximum number of A. colemani mummies was 18 per lower leaf, and the maximum number of O. laevigatus was 0.5 per flower. Azoxystrobin did not influence the densities of A. colemani and O. laevigatus. The results show that the selected fungicides can be used with A. colemani and O. laevigatus for the intergrated pest management of cotton aphid and western flower thrips in cucumber polyvinyl house cultivation.

Effect of Heavy Metals on the Secretion of Amylase in Rat Pancreatic Fragments (중금속류가 취절편의 Amylase 분비에 미치는 영향)

  • Kim, Hea-Young;Kim, Won-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.31-36
    • /
    • 1981
  • Heavy metals which are present as trace elements in human body have been known to modify various enzymatic reaction. These metals can be essential or non-essential. Zinc, copper and calcium are essential in maintaining some biological processes, whereas non-essential metals such as cadmium, lead and mercury produce accumulatve toxic effect. Cadmium accumulated in pancreas can cause toxicity and damage of pancreatic cells, thereby influencing CHO metabolism. Lead compounds are known to produce toxic effects on the kidney, digestive system and brain fellowed by inhibition of activity of ${\rho}-aminolevulinic$ acid and biosynthesis of hemoproteins and cytochrome. Evidence has been accumulated that zinc not only acts as a cofactor in enzyme reaction but also prevents toxic effect induced by heavy metal such as copper and cadmium. To demonstrate the effect of heavy metals on pancreatic secretion, part of uncinate pancreas was taken and incubated in Krebs-Ringer bicarbonate buffer with heavy metals used. Additional treatment with CCK-OP was performed when needed. After incubation during different period of time, medium was analyzed for amylase activity using Bernfeld's method. The present study was attempted in order to elucidate the effect of several kinds of heavy metal on exocrine pancreatic secretion in vitro. The results obtained are as follows: 1) CCK-OP stimulated significantly amylase release from pancreatic fragments in vitro. 2) CCK-OP response of amylase release from pancreatic fragments was inhibited by treatmant with cadmium, especially high doses of cadmium. 3) CCK-OP response of amylase release from pancreatic fragments was inhibited when pretreated with $10^{-4}M$ copper chloride. 4) Lead chloride at the concentration of $10^{-3}M\;and\;10^{4}M$ stimulated the basal amylase release in vitro but CCK-OP response did not augment by lead chloride. 5) Zine chloride did not affect amylase release from pancreatic fragment in vitro. From the results mentioned above, it is suggested that CCK-OP response was inhibited it the amylase release from pancreatic fragments pretreated with cadmium and copper chloride.

  • PDF

Risk Assessment of Pesticide for Earthworms (농약의 지렁이에 대한 위해성 평가)

  • Park, Kyung-Hun;Park, Yeon-Ki;Joo, Jin-Bok;Kyung, Kee-Sung;Shin, Jin-Sup;Kim, Chan-Sub;Park, Byung-Jun;Uhm, Jae-Youl
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.4
    • /
    • pp.280-287
    • /
    • 2003
  • To assess the risk of pesticides on earthworm, the acute toxicities of 10 pesticides were investigated and their toxicity exposure ratios(TERs) were calculated. As the TERs of paraquat dichloride and pendimethalin were more than 100, their risks were rated negligible. Risk of benfuracarb, cadusafos, chlorpyrifos-methyl, endosulfan, isazofos and parathion which have TERs of $10\sim100$ were rated low. However, risk of imidacloprid and phorate which have TER of less than 10 were estimated highly to need a reproduction study. Earthworms were exposed to twenty two pesticides including dazomet 98% GR having PECs of more than $5mg{\cdot}kg^{-1}$ in artificial soil at standard and double dose for 14 days. All the earthworms exposed to dazomet 98% GR and metam-sodium 25% SL were died to show their high risk, while no serious adverse effects were observed in the soil treated with 15 pesticides, calcite 95% WP, calcium polysulfide 36% CF, chlorothalonil 75% WP, daminozide 85% WP, dichlonil 6.7% GR, etridiazole 25% EC, fosetyl-Al 80% WP, glyphosate 41 % SL, hymexazol 30% SL, iprodione 50% WP, machine oil 95% EC, mancozeb 75% WP, propineb 70% WP, terbuthylazine 80% WP and triazophos 40% EC. In case of thiophanate-methyl 70% WP, copper hydroxide 77% WP, dimethoate 46% EC, tolclofos-methyl 50% WP and propamocarb hydrochloride 67% SL, any effect did not show clearly, suggesting an additional subchronic toxicity study. The risk of thiophanate-methyl 70% WP to earthworm was estimated high, considering its subchronic effect, while effects of copper hydroxide 77% WP, dimethoate 46% EC, tolclofos-methyl 50% WP and propamocarb hydrochloride 67% SL to earthworms were negligible, considering no adverse effects in subchronic tests.

Relationship between Toxicity of Heavy Metals and Sludge Retention Time in Sequencing Batch Reactor Process (연속회분식반응조 공정에서 슬러지 체류시간과 중금속 독성의 관계)

  • Kim, Keum-Yong;Cho, Young-Cheol;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.283-288
    • /
    • 2007
  • In order to elucidate the relationship between the sludge retention time(SRT) and the toxicity of heavy metals, such as copper (Cu), cadmium(Cd), and zinc(Zn), in sequencing batch reactor(SBR) process, IC50 was estimated with measuring of INT-dehydrogenase activity in variable SRTs. When the concentrations of heavy metals were increased, the activity of INT-dehydrogenase was gradually decreased indicating the heavy metals inhibit bacterial activity. Cu showed higher toxicity than Zn and Cd. $IC_{50}$ of Cu, Cd, and Zn ranged from $0.37\sim1.96$ mg/L, $15.4\sim16.9$ mg/L, and $9.70\sim23.4$ mg/L, respectively. The toxicity of Cu and Zn was reversely proportional to the length of SRT. It is probably caused by the increased concentration of extracellular polymeric substances in longer SRT which absorb heavy metals. Therefore, the operation of SBR with increased SRT is desirable in treatment of industrial wastewater containing heavy metals.

Aquatic Toxicity Evaluation of Sediment Elutriate and Surface Water in Streams Entering Lake Shihwa (시화호 유입 지천의 지표수와 퇴적물 용출수가 수서 지표생물에 미치는 급.만성 생태 독성 영향)

  • Park, Ye-Na;Kim, Sun-Mi;Han, Sun-Young;Lee, Ji-Youn;Lee, Jin-Young;Park, Yoon-Suk;Yoon, Chung-Sik;Choi, Kyung-Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.4
    • /
    • pp.267-276
    • /
    • 2008
  • Acute and chronic toxicities of sediment elutriate and surface water samples collected at Lake Shihwa were evaluated using standard toxicity testing organisms including Vibrio fischeri, Daphnia magna and Moina macrocopa. Acute exposure resulted in toxic effects in all surface water or sediment elutriate samples, except for those collected from the reed swamp and Okgu stream. The rainy season influenced the toxicity of the water samples, presumably either by dilution of point discharge or through introduction of non-point source contaminants through runoff. In the sediment, elutriate and surface water samples, copper was detected above potentially lethal concentration, which may in part explain the observed toxicity. Considering acute toxicities of the surface water streams that direct to the Lake Shihwa, efforts should be warranted to control and reduce discharge of point and non-point sources along Lake Shihwa.

Copper Toxicity on Survival, Respiration and Organ Structure of Mactra veneriformis (Bivalvia: Mactridae) (동죽, Mactra veneriformis의 생존, 호흡 및 기관계 구조에 미치는 구리 (Cu)의 독성)

  • Shin, Yun Kyung;Park, Jung Jun;Lim, Hyun Sig;Lee, Jung Sick
    • The Korean Journal of Malacology
    • /
    • v.29 no.2
    • /
    • pp.129-137
    • /
    • 2013
  • This study was conducted to find out the changes of survivorship, respiration and organ structure of Mactra veneriformis exposed to copper (Cu). Experimental period was four weeks. Experimental groups were composed of one control condition and three copper exposure conditions (0.025, 0.050 and 0.100 mg/L). The results of the study confirmed that copper induces reduction of survival rate and respiration rate and histopathology of organ structure of the bivalve. In the copper concentration of 0.100 mg/L, mortality was 100% after Cu exposure of 3 weeks. Respiration rate was observed exposure groups lower than control decline by 75%. Histological analysis of organ system illustrated expansion of hemolymph sinus, disappearance of epidermal layer and degeneration of connective tissue layer of the mantle. Also, histological degenerations as epithelial necrosis and hyperplasia of mucous cells are recognized in the gill and it was observed expansion of hemolymph sinus, disruption of epithelial layer, decrease of mucous cell and degeneration of connective tissue layer in the foot. In the digestive diverticulum, it was showed atrophy of basophilic cell and degeneration of epithelial cell in the digestive tubules, and as the concentration of copper increased the accumulation of lipofuscin increased.

Effects of Lead, Copper and Cadmium on Pseudomonas cepacia KH410 Isolated from Freshwater Plant Root (담수식물 근계로부터 분리된 Pseudomonas cepacia KH410 균주에 대한 납, 구리, 카드뮴의 영향)

  • 김영희
    • Korean Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.26-30
    • /
    • 2002
  • A ubiquitous bacterium,Effects of Lead, Copper and Cadmium on Pseudomonas cepacia KH410 Isolated from Freshwater Plant Root was isolated from freshwater plant root and interactions of lead, copper and cadmium with this strain was studied. Mass production of dry cell weight 2.72 g-DCW/ι-medium was obtained by cultivation in a nutrient medium containing 1% yeast extract, 1% soytone and 0.5% NaCl, pH 7.0, at temperature of 28℃ for 24 hrs under aeration. The mass of dry cell produced after exposure with 100 mg/ι of heavy metal was 1.98 g/ι for lead, 1.58 g/ι for copper and 0.20 g/ι for cadmium, respectively. The minimal inhibitory concentrations (MIC) for each heavy metal was 1.3 mM for lead,0.8 mM for copper and 0.4 mM fur cadmium, respectively. Cell aggregation occurred by each heavy metal exposure was observed from 1 day to 4 days by an optical microscope. Entrapment, precipitation effects on cell by heavy metals between 10 min and two hours were examined by an electron microscopy. Cadmium appeared to be the most toxic on cells and the order of toxicity was cadmium>copper>lead.

Biological Effects and Mouthpart Deformity on Chironomus plumosus Exposed to Chromium and Copper (크롬(Cr)과 구리(Cu) 노출에 따른 Chironomus plumosus 깔다구의 생물학적 영향과 하순기절 기형발생)

  • Kim, Won-Seok;Park, Kiyun;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.1
    • /
    • pp.13-20
    • /
    • 2019
  • Heavy metals resulted from the increase of human industrial activity are introduced into the environment through rainfall and wastewater, and have harmful effects on inhabitants. In this study, we investigated biological responses such as survival rate, growth rate, emergence rate and sex ratio, and morphological effects of mentum deformity in Chironomus plumosus, an indicator organism to evaluate pollutions on aquatic ecosystem. The survival rate of C. plumosus showed time- and dose-dependent decrease after chromium and copper exposures. Growth rate decreased at $4^{th}$ day after chromium exposure and significantly reduced at exposure to relatively high concentration (copper $1000mg\;L^{-1}$) for all exposure times. In addition, we observed that the emergence rate by exposure to copper $1000mg\;L^{-1}$ was significantly lower than that of the control group. The imbalance of sex ratios showed at relatively low concentrations (chromium 10 and $50mg\;L^{-1}$) with the high proportion of female and at the relative high concentration (copper $1000mg\;L^{-1}$) with the high proportion of male. Furthermore, the morphological mentum deformities of C. plumosus observed in the exposed group according to chromium and copper exposure. These results suggest that the heavy metal exposure in environment may influence biosynthetic and morphological stresses of benthic invertebrate C. plumosus, and aquatic midge C. plumosus are potential indicators for toxicity assessment of heavy metals such as chromium and copper.

Nutrient Recycling : The North American Experience - Review -

  • Fontenot, J.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.642-650
    • /
    • 1999
  • Options available for utilization of animal wastes include sources of plant nutrients, feed ingredients for farm animals, substrate for methane generation, and substrate for microbial and insect protein synthesis. The wastes have the most economic value for use as animal feed. Performance of animals fed diets containing animal wastes is similar to that of animals fed conventional diets. Processing of animal wastes to be used as animal feed is necessary for destruction of pathogens, improvement of handling and storage characteristics, and maintenance or enhancement of palatability. Feeding of animal waste has not adversely affected the quality and taste of animal products. In the USA copper toxicity has been reported in sheep fed high-copper poultry litter, but this is not a serious problem with cattle. Potential pathogenic microorganisms in animal wastes are destroyed by processing such as heat treatment, ensiling and deep stacking. Incidents of botulism, caused by Clostridium botulinum, have been reported in cattle in some countries, and this problem was caused by the presence of poultry carcasses in litter. This problem has not occurred in the USA. With appropriate withdrawal, heavy metal, pesticide or medicinal drug accumulation in edible tissues of animals fed animal wastes is not a problem. Feeding of animal wastes is regulated by individual states in the USA. The practice is regulated in Canada, also. With good management, animal wastes can be used safely as animal feed.

Copper ion Toxicity Causes Discrepancy between Acetate Degradation and Methane Production in Granular Sludge

  • Bae, Jin-Woo;Rhee, Sung-Keun;Jang, Am;Kim, In-S.;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.849-853
    • /
    • 2002
  • Metal ions have an adverse effect on anaerobic digestion. In an acetate degradation test of upflow of anaerobic sludge blanket granules with $Cu^{2+}$, not all of the acetate that disappeared was stoichiometrically converted to methane. In the presence of 400 mg/g-VSS (volatile suspended solids) $Cu^{2+}$, only 26% of the acetate consumed was converted to methane. To study acetate conversion by other anaerobic microorganisms, sulfate and nitrate reductions were investigated in the presence of $Cu^{2+}$ Sulfate and nitrate reductions exhibited more resistance to $Cu^{2+}$than methanogenesis, and the granules reduced 2.2 mM and 5.4 mM of nitrate and sulfate, respectively, in the presence of 400 mg/g-VSS copper ion. However, the acetate degraded by sulfate and nitrate reductions was only 24% of the missing acetate that could have been stoichiometrically converted to $CO_2$. Accordingly, 76% of the acetate consumed appeared to have been converted to other unknown compounds.