DOI QR코드

DOI QR Code

Biological Effects and Mouthpart Deformity on Chironomus plumosus Exposed to Chromium and Copper

크롬(Cr)과 구리(Cu) 노출에 따른 Chironomus plumosus 깔다구의 생물학적 영향과 하순기절 기형발생

  • Kim, Won-Seok (Division of Marine Technology, Chonnam National University) ;
  • Park, Kiyun (Fisheries Science Institute, Chonnam National University) ;
  • Kwak, Ihn-Sil (Division of Marine Technology, Chonnam National University)
  • Received : 2019.01.31
  • Accepted : 2019.02.12
  • Published : 2019.03.31

Abstract

Heavy metals resulted from the increase of human industrial activity are introduced into the environment through rainfall and wastewater, and have harmful effects on inhabitants. In this study, we investigated biological responses such as survival rate, growth rate, emergence rate and sex ratio, and morphological effects of mentum deformity in Chironomus plumosus, an indicator organism to evaluate pollutions on aquatic ecosystem. The survival rate of C. plumosus showed time- and dose-dependent decrease after chromium and copper exposures. Growth rate decreased at $4^{th}$ day after chromium exposure and significantly reduced at exposure to relatively high concentration (copper $1000mg\;L^{-1}$) for all exposure times. In addition, we observed that the emergence rate by exposure to copper $1000mg\;L^{-1}$ was significantly lower than that of the control group. The imbalance of sex ratios showed at relatively low concentrations (chromium 10 and $50mg\;L^{-1}$) with the high proportion of female and at the relative high concentration (copper $1000mg\;L^{-1}$) with the high proportion of male. Furthermore, the morphological mentum deformities of C. plumosus observed in the exposed group according to chromium and copper exposure. These results suggest that the heavy metal exposure in environment may influence biosynthetic and morphological stresses of benthic invertebrate C. plumosus, and aquatic midge C. plumosus are potential indicators for toxicity assessment of heavy metals such as chromium and copper.

인간의 산업활동 증가로 인해 발생하는 크롬과 구리 중금속은 강우와 폐수를 통해 환경으로 유입되어 서식 생물에 유해한 영향을 준다. 본 연구에서는 하천 수생태계 오염 지표 생물인 Chironomus plumosus를 대상으로 크롬과 구리 노출에 따른 생존율, 성장률, 우화율, 성비 등의 생물학적 반응과 하순기절 기형의 형태적 영향을 관찰하였다. C. plumosus의 생존율은 크롬과 구리 노출 시간-농도의존적인 감소를 나타냈다. 성장률은 크롬 노출 후 4일째 감소하였고 구리 노출 시에는 상대적으로 고농도인 $1000mg\;L^{-1}$에서 모든 노출 시간에 감소함을 확인하였다. 또한 $1000mg\;L^{-1}$ 구리 노출에서 대조군에 비해 우화율이 급격히 감소함을 관찰하였다. 크롬 노출 시 성비는 상대적 저농도에서(10과 $50mg\;L^{-1}$) 대조군과 달리 암컷의 비율이 증가했지만 구리 노출 시에는 상대적으로 고농도인 $1000mg\;L^{-1}$에서 수컷의 비율이 눈에 띄게 증가하는 성비불균형을 확인하였다. 나아가 C. plumosus 하순기절 형태적 기형은 크롬과 구리 노출에 따라 노출군에서 발생함을 관찰하였다. 이러한 결과는 크롬과 구리의 수생태계 유입이 서식하는 저서무척추동물인 C. plumosus의 생물학적, 형태적 유해 스트레스를 제공하며 C. plumosus가 크롬과 구리 같은 중금속 독성평가에 민감하게 반응하는 지표종임을 제시한다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Cervera, A., A. Cristina Maymo, R. Martinez-Pardo and M. Dolores Garcera. 2005. Vitellogenesis inhibition in Oncopeltus fasciatus females (Heteroptera: Lygaeidae) exposed to cadmium. Journal of Insect Physiology 51: 895-911. https://doi.org/10.1016/j.jinsphys.2005.04.005
  2. Colombo, V., V.J. Pettigrove, L.A. Golding and A.A. Hoffmann. 2014. Transgenerational effects of parental nutritional status on offspring development time, survival, fecundity, and sensitivity to zinc in Chironomus tepperi midges. Ecotoxicology and Environmental Safety 110: 1-7. https://doi.org/10.1016/j.ecoenv.2014.07.037
  3. Dias, V., C. Vasseur and J.M. Bonzom. 2008. Exposure of Chironomus riparius larvae to uranium: effects on survival, development time, growth, and mouthpart deformities. Chemosphere 71: 574-581. https://doi.org/10.1016/j.chemosphere.2007.09.029
  4. Dickman, M., I. Brindle and M. Benson. 1992. Evidence of teratogens in sediments of the Niagara River watershed as reflected by chironomid (Diptera: Chironomidae) labial plate deformities. Journal of Great Lakes Research 18: 467-480. https://doi.org/10.1016/S0380-1330(92)71312-4
  5. Elendt, B.P. 1990. Selenium deficiency in Crustacea; an ultrastructural approach to antennal damage in Daphnia magna Straus. Protoplasma 154: 25-33. https://doi.org/10.1007/BF01349532
  6. Grosell, M., J. Blanchard, K.V. Brix and R. Gerdes. 2007. Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquatic Toxicology 84: 162-172. https://doi.org/10.1016/j.aquatox.2007.03.026
  7. Hahn, T., M. Liess and R. Schulz. 2001. Effects of the hormone mimetic insecticide tebufenozide on Chironomus riparius larvae in two different exposure setups. Ecotoxicology and Environmental Safety 49: 171-178. https://doi.org/10.1006/eesa.2001.2055
  8. Handy, R.D. 2003. Chronic effects of copper exposure versus endocrine toxicity: two sides of the same toxicological process? Comparative Biochemistry and Physiology -Part A: Molecular & Integrative Physiology 135: 25-38. https://doi.org/10.1016/S1095-6433(03)00018-7
  9. Herkovits, J. and A. Helguero. 1998. Copper toxicity and copper-zinc interactions in amphibian embryos. Science of the Total Environment 221: 1-10. https://doi.org/10.1016/S0048-9697(98)00184-3
  10. Jeong, H., K.T. Kim, E.S. Kim, K. Ra and S.Y. Lee. 2016. Sediment quality assessment for heavy metals in streams around the Shihwa Lake. Journal of the Korean Society for Marine Environment and Energy 19: 25-36. https://doi.org/10.7846/JKOSMEE.2016.19.1.25
  11. Kim, S., X. Xu, Y. Zhang, X. Zheng, R. Liu, K. Dietrich, T. Reponen, S.M. Ho, C. Xie, H. Sucharew, X. Huo and A. Chen. 2018. Metal concentrations in pregnant women and neonates from informal electronic waste recycling. Journal of Exposure Science & Environmental Epidemiology [Epub ahead of print].
  12. Kim, W.S., B.H. Im, C. Hong, S.W. Choi, K. Park and I.S. Kwak. 2017. Gene expression of Chironomus riparius heat shock protein 70 and developmental retardation exposure to salinity. Korean Journal of Ecology and Environment 50: 305-313. https://doi.org/10.11614/KSL.2017.50.3.305
  13. Kim, W.S., R. Kim, K. Park, N. Chamilani and I.S. Kwak. 2015. The molecular biomarker genes expressions of rearing species Chironomus riparious and field species Chironomus plumosus exposure to heavy metals. Korean Journal of Ecology and Environment 48: 86-94. https://doi.org/10.11614/KSL.2015.48.2.086
  14. Maritim, A.C., R.A. Sanders and J.D. Watkins. 3rd. 2003. Diabetes, oxidative stress, and antioxidants: a review. Journal of Biochemical and Molecular Toxicology 17: 24-38. https://doi.org/10.1002/jbt.10058
  15. Michailova, P., J. Ilkova, A.P. Dean and K.N. White. 2015. Cytogenetic index and functional genome alterations in Chironomus piger Strenzke (Diptera, Chironomidae) in the assessment of sediment pollution: a case study of Bulgarian and UK rivers. Ecotoxicology and Environmental Safety 111: 220-227. https://doi.org/10.1016/j.ecoenv.2014.10.018
  16. Park, K. and I.S. Kwak. 2008. Characterization of heat shock protein 40 and 90 in Chironomus riparius larvae: effects of di (2-ethylhexyl) phthalate exposure on gene expressions and mouthpart deformities. Chemosphere 74: 89-95. https://doi.org/10.1016/j.chemosphere.2008.09.041
  17. Park, K. and I.S. Kwak. 2009. Alcohol dehydrogenase gene expression in Chironomus riparius exposed to di (2-ethylhexyl) phthalate. Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology 150: 361-367. https://doi.org/10.1016/j.cbpc.2009.05.015
  18. Park, K. and I.S. Kwak. 2012. Assessment of potential biomarkers, metallothionein and vitellogenin mRNA expressions in various chemically exposed benthic Chironomus riparius larvae. Ocean Science Journal 47: 435-444. https://doi.org/10.1007/s12601-012-0039-x
  19. Park, K. and I.S. Kwak. 2018. Disrupting effects of antibiotic sulfathiazole on developmental process during sensitive life-cycle stage of Chironomus riparius. Chemosphere 190: 25-34. https://doi.org/10.1016/j.chemosphere.2017.09.118
  20. Park, K., H.W. Bang, J. Park and I.S. Kwak. 2009. Ecotoxicological multilevel-evaluation of the effects of fenbendazole exposure to Chironomus riparius larvae. Chemosphere 77: 359-367. https://doi.org/10.1016/j.chemosphere.2009.07.019
  21. Park, K., J. Park, J. Kim and I.S. Kwak. 2010. Biological and molecular responses of Chironomus riparius (Diptera, Chironomidae) to herbicide 2,4-D(2,4-dichlorophenoxy acetic acid). Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology 151: 439-446. https://doi.org/10.1016/j.cbpc.2010.01.009
  22. Park, K., T.S. Kwak, W.S. Kim and I.S. Kwak. 2019. Changes in exoskeleton surface roughness and expression of chitinase genes in mud crab Macrophthalmus japonicus following heavy metal differences of estuary. Marine Pollution Bulletin 138: 11-18. https://doi.org/10.1016/j.marpolbul.2018.11.016
  23. Smida, A.D., X.P. Valderrama, M.C. Agostini, M.A. Furlan and J. Chedrese. 2004. Cadmium stimulates transcription of the cytochrome p450 side chain cleavage gene in genetically modified stable porcine granulosa cells. Biology of Reproduction 70: 25-31. https://doi.org/10.1095/biolreprod.103.019000
  24. Sinha, S., R. Saxena and S. Singh. 2005. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58: 595-604. https://doi.org/10.1016/j.chemosphere.2004.08.071
  25. Velki, M., D. Kodrik, J. Vecera, B.K. Hackenberger and R. Socha. 2011. Oxidative stress elicited by insecticides: a role for the adipokinetic hormone. General and Comparative Endocrinology 172: 77-84. https://doi.org/10.1016/j.ygcen.2010.12.009
  26. Vignati, D.A.L., B.J.D. Ferrari, J.L. Roulier, M. Coquery, E. Szalinska, A. Bobrowski, A. Czaplicka, A. Kownacki and J. Dominik. 2018. Chromium bioavailability in aquatic systems impacted by tannery wastewaters. Part 1: Understanding chromium accumulation by indigenous chironomids. Science of the Total Environment 653: 401-408.
  27. Yang, J., Z. Cui, O.A. Dada, Y. Yang, H. Yu, Y. Xu, Z. Lin, Y. Chen and X. Tang. 2018. Distribution and enrichment of trace metals in surface marine sediments collected by the manned submersible Jiaolong in the Yap Trench, northwest Pacific Ocean. Marine Pollution Bulletin 135: 1035-1041. https://doi.org/10.1016/j.marpolbul.2018.08.038