• 제목/요약/키워드: convolutional neural networks (CNN)

검색결과 356건 처리시간 0.033초

Traffic Signal Recognition System Based on Color and Time for Visually Impaired

  • P. Kamakshi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.48-54
    • /
    • 2023
  • Nowadays, a blind man finds it very difficult to cross the roads. They should be very vigilant with every step they take. To resolve this problem, Convolutional Neural Networks(CNN) is a best method to analyse the data and automate the model without intervention of human being. In this work, a traffic signal recognition system is designed using CNN for the visually impaired. To provide a safe walking environment, a voice message is given according to light state and timer state at that instance. The developed model consists of two phases, in the first phase the CNN model is trained to classify different images captured from traffic signals. Common Objects in Context (COCO) labelled dataset is used, which includes images of different classes like traffic lights, bicycles, cars etc. The traffic light object will be detected using this labelled dataset with help of object detection model. The CNN model detects the color of the traffic light and timer displayed on the traffic image. In the second phase, from the detected color of the light and timer value a text message is generated and sent to the text-to-speech conversion model to make voice guidance for the blind person. The developed traffic light recognition model recognizes traffic light color and countdown timer displayed on the signal for safe signal crossing. The countdown timer displayed on the signal was not considered in existing models which is very useful. The proposed model has given accurate results in different scenarios when compared to other models.

인공지능을 활용한 초음파 신호와 합성곱 신경망 기반 자동 적조 모니터링 시스템 (Development of an Automatic Monitoring System for Ultrasound Signals Using Artificial Intelligence and Convolutional Neural Networks)

  • 김대훈;전현주;이오준;임해균
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.662-664
    • /
    • 2023
  • 해양 식물플랑크톤의 성장은 유해적인 적조를 유발할 수 있으며, 이는 여러 국가의 생태계에 피해를 주는 상황이다. 적조를 모니터링하는 것은 식물플랑크톤 미생물의 증가를 예방하고 통제하기 위해 중요하다. 그러나 현재의 적조 모니터링 기술은 날씨, 시간 제약 및 실시간 모니터링에 대한 어려움으로 인해 측정 정확도에 영향을 미치는 한계가 있다. 본 연구는 특히 적조 발생을 감지하기 위한 목적으로 개발된 자동 실시간 모니터링 시스템의 성공적인 개발을 보여준다. 개발한 시스템은 음향 반사파 데이터 처리를 통해 합성곱 신경망(Convolutional neural networks, CNN)을 활용하여 식물플랑크톤 농도를 정확하게 구별할 수 있다. 특히, 이 CNN 모델은 음향 신호의 변환된 주파수 스펙트럼과 Cochlodinium polykrikoides (C. polykrikoides)의 농도 간의 상관 관계를 수립하는 데 뛰어난 효과를 나타냈다. 이 CNN 은 C. polykrikoides 를 감지하는 데 0.90 의 정확도를 보여준다. 이러한 모니터링과 CNN 분류의 활용은 실시간 측정의 중요한 잠재력을 보여주며, 추가적인 절차가 필요 없는 자동 모니터링 시스템을 구축할 수 있을 것으로 예상된다.

Deep Convolutional Neural Network(DCNN)을 이용한 계층적 농작물의 종류와 질병 분류 기법 (A Hierarchical Deep Convolutional Neural Network for Crop Species and Diseases Classification)

  • ;나형철;류관희
    • 한국멀티미디어학회논문지
    • /
    • 제25권11호
    • /
    • pp.1653-1671
    • /
    • 2022
  • Crop diseases affect crop production, more than 30 billion USD globally. We proposed a classification study of crop species and diseases using deep learning algorithms for corn, cucumber, pepper, and strawberry. Our study has three steps of species classification, disease detection, and disease classification, which is noteworthy for using captured images without additional processes. We designed deep learning approach of deep learning convolutional neural networks based on Mask R-CNN model to classify crop species. Inception and Resnet models were presented for disease detection and classification sequentially. For classification, we trained Mask R-CNN network and achieved loss value of 0.72 for crop species classification and segmentation. For disease detection, InceptionV3 and ResNet101-V2 models were trained for nodes of crop species on 1,500 images of normal and diseased labels, resulting in the accuracies of 0.984, 0.969, 0.956, and 0.962 for corn, cucumber, pepper, and strawberry by InceptionV3 model with higher accuracy and AUC. For disease classification, InceptionV3 and ResNet 101-V2 models were trained for nodes of crop species on 1,500 images of diseased label, resulting in the accuracies of 0.995 and 0.992 for corn and cucumber by ResNet101 with higher accuracy and AUC whereas 0.940 and 0.988 for pepper and strawberry by Inception.

심층 컨벌루션 신경망 기반의 실시간 드론 탐지 알고리즘 (Convolutional Neural Network-based Real-Time Drone Detection Algorithm)

  • 이동현
    • 로봇학회논문지
    • /
    • 제12권4호
    • /
    • pp.425-431
    • /
    • 2017
  • As drones gain more popularity these days, drone detection becomes more important part of the drone systems for safety, privacy, crime prevention and etc. However, existing drone detection systems are expensive and heavy so that they are only suitable for industrial or military purpose. This paper proposes a novel approach for training Convolutional Neural Networks to detect drones from images that can be used in embedded systems. Unlike previous works that consider the class probability of the image areas where the class object exists, the proposed approach takes account of all areas in the image for robust classification and object detection. Moreover, a novel loss function is proposed for the CNN to learn more effectively from limited amount of training data. The experimental results with various drone images show that the proposed approach performs efficiently in real drone detection scenarios.

싱글숏 멀티박스 검출기에서 객체 검출을 위한 가속 회로 인지형 가지치기 기반 합성곱 신경망 기법 (Convolutional Neural Network Based on Accelerator-Aware Pruning for Object Detection in Single-Shot Multibox Detector)

  • Kang, Hyeong-Ju
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.141-144
    • /
    • 2020
  • Convolutional neural networks (CNNs) show high performance in computer vision tasks including object detection, but a lot of weight storage and computation is required. In this paper, a pruning scheme is applied to CNNs for object detection, which can remove much amount of weights with a negligible performance degradation. Contrary to the previous ones, the pruning scheme applied in this paper considers the base accelerator architecture. With the consideration, the pruned CNNs can be efficiently performed on an ASIC or FPGA accelerator. Even with the constrained pruning, the resulting CNN shows a negligible degradation of detection performance, less-than-1% point degradation of mAP on VOD0712 test set. With the proposed scheme, CNNs can be applied to objection dtection efficiently.

Black Ice Detection Platform and Its Evaluation using Jetson Nano Devices based on Convolutional Neural Network (CNN)

  • Sun-Kyoung KANG;Yeonwoo LEE
    • 한국인공지능학회지
    • /
    • 제11권4호
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we propose a black ice detection platform framework using Convolutional Neural Networks (CNNs). To overcome black ice problem, we introduce a real-time based early warning platform using CNN-based architecture, and furthermore, in order to enhance the accuracy of black ice detection, we apply a multi-scale dilation convolution feature fusion (MsDC-FF) technique. Then, we establish a specialized experimental platform by using a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Experimental results of a real-time black ice detection platform show the better performance of our proposed network model compared to conventional image segmentation models. Our proposed platform have achieved real-time segmentation of road black ice areas by deploying a road black ice area segmentation network on the edge device Jetson Nano devices. This approach in parallel using multi-scale dilated convolutions with different dilation rates had faster segmentation speeds due to its smaller model parameters. The proposed MsCD-FF Net(2) model had the fastest segmentation speed at 5.53 frame per second (FPS). Thereby encouraging safe driving for motorists and providing decision support for road surface management in the road traffic monitoring department.

복합형 필터와 CNN 모델을 이용한 효과적인 얼굴 검출 기법 (Robust Face Detection Using Hybrid Filters and Convolutional Neural Networks)

  • 조일국;박현정;김호준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.451-454
    • /
    • 2005
  • 본 논문에서는 수정된 CNN(Convolutional Neural Network) 모델과 다중 필터가 상호 결합된 형태의 얼굴 패턴 검출 기법을 소개 한다. 이는 로봇 시각의 응용문제에서 실내영상의 실시간 인식문제를 대상으로 한다. 검출 과정의 효율성 향상을 위하여 도입된 다중 필터는 후보 영역의 개수와 범위를 줄일 수 있게 한다. 제안된 모델에서 CNN 신경망은 가보변환(Gabor Transform)계층을 두어 검출 과정의 첫 단계에서 영상 내의 기본 특징 지도를 생성 하도록 하였다. 보다 강인한 검출기능을 위하여 조명보정 기법이 시스템의 전처리 단계로 구현 된다. 실제 영상을 통한 실험 결과로부터 제안된 이론의 타당성을 고찰 한다.

  • PDF

노인 홈 케어를위한 CNN 기반의 비정상 인간 활동 인식 시스템 (Abnormal Human Activity Recognition System Based on CNN For Elderly Home Care)

  • 아레주;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.542-544
    • /
    • 2019
  • Changes in a person's health affect one's lifestyle and work activities. According to the World Health Organization (WHO), abnormal activity is growing faster in people aged 60 or more than any other age group in almost every country. This trend steadily continues and expected to increase further in the near future. Abnormal activity put these people at high risk of expected incidents since most of these people live alone. Human abnormal activity analysis is a challenging, useful and interesting problem among the researchers and its particularly crucial task in life and health care areas. In this paper, we discuss the problem of abnormal activities of old people lives alone at home. We propose Convolutional Neural Network (CNN) based model to detect the abnormal behaviors of elderlies by utilizing six simulated action data from daily life actions.

CNN 기반 특징맵 사용에 따른 특징점 가시화와 에러율 (Feature Visualization and Error Rate Using Feature Map by Convolutional Neural Networks)

  • 진태석
    • 한국산업융합학회 논문집
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, we presented the experimental basis for the theoretical background and robustness of the Convolutional Neural Network for object recognition based on artificial intelligence. An experimental result was performed to visualize the weighting filters and feature maps for each layer to determine what characteristics CNN is automatically generating. experimental results were presented on the trend of learning error and identification error rate by checking the relevance of the weight filter and feature map for learning error and identification error. The weighting filter and characteristic map are presented as experimental results. The automatically generated characteristic quantities presented the results of error rates for moving and rotating robustness to geometric changes.

딥 러닝 및 칼만 필터를 이용한 객체 추적 방법 (Object Tracking Method using Deep Learning and Kalman Filter)

  • 김기철;손소희;김민섭;전진우;이인재;차지훈;최해철
    • 방송공학회논문지
    • /
    • 제24권3호
    • /
    • pp.495-505
    • /
    • 2019
  • 딥 러닝의 대표 알고리즘에는 영상 인식에 주로 사용되는 CNN(Convolutional Neural Networks), 음성인식 및 자연어 처리에 주로 사용되는 RNN(Recurrent Neural Networks) 등이 있다. 이 중 CNN은 데이터로부터 자동으로 특징을 학습하는 알고리즘으로 특징 맵을 생성하는 필터까지 학습할 수 있어 영상 인식 분야에서 우수한 성능을 보이면서 주류를 이루게 되었다. 이후, 객체 탐지 분야에서는 CNN의 성능을 향상하고자 R-CNN 등 다양한 알고리즘이 등장하였으며, 최근에는 검출 속도 향상을 위해 YOLO(You Only Look Once), SSD(Single Shot Multi-box Detector) 등의 알고리즘이 제안되고 있다. 하지만 이러한 딥러닝 기반 탐지 네트워크는 정지 영상에서 탐지의 성공 여부를 결정하기 때문에 동영상에서의 안정적인 객체 추적 및 탐지를 위해서는 별도의 추적 기능이 필요하다. 따라서 본 논문에서는 동영상에서의 객체 추적 및 탐지 성능 향상을 위해 딥 러닝 기반 탐지 네트워크에 칼만 필터를 결합한 방법을 제안한다. 탐지 네트워크는 실시간 처리가 가능한 YOLO v2를 이용하였으며, 실험 결과 제안한 방법은 기존 YOLO v2 네트워크에 비교하여 7.7%의 IoU 성능 향상 결과를 보였고 FHD 영상에서 20 fps의 처리 속도를 보였다.