• Title/Summary/Keyword: convolution transform

Search Result 149, Processing Time 0.026 seconds

On a Class of Meromorphic Functions Defined by Certain Linear Operators

  • Kumar, Shanmugam Sivaprasad;Taneja, Harish Chander
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.631-646
    • /
    • 2009
  • In the present investigation, we introduce new classes of p-valent meromorphic functions defined by Liu-Srivastava linear operator and the multiplier transform and study their properties by using certain first order differential subordination and superordination.

Simplified approach for symbol error rate analysis of SC-FDMA scheme over Rayleigh fading channel

  • Trivedi, Vinay Kumar;Sinha, Madhusudan Kumar;Kumar, Preetam
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.537-545
    • /
    • 2018
  • In this paper, we present a comprehensive analytical study of the symbol error rate (SER) of single-carrier frequency-division multiple access (SC-FDMA) with zero-forcing frequency domain equalization (ZF-FDE) over a Rayleigh fading channel. SC-FDMA is considered as a potential waveform candidate for fifth-generation (5G) radio access networks (RANs). First, the $N_C$ fold convolution of the noise distribution of an orthogonal frequency-division multiplexing (OFDM) system is computed for each value of the signal-to-noise ratio (SNR) in order to determine the noise distribution of the SC-FDMA system. $N_C$ is the number of subcarriers assigned to a user or the size of the discrete Fourier transform (DFT) precoding. Here, we present a simple alternative method of calculating the SER by simplifying the $N_C$ fold convolution using time and amplitude scaling properties. The effects of the $N_C$ fold convolution and SNR over the computation of the SER of the SC-FDMA system has been separated out. As a result, the proposed approach only requires the computation of the $N_C$ fold convolution once, and it is used for different values of SNR to calculate the SER of SC-FDMA systems.

ON A CLASS OF GENERALIZED FUNCTIONS FOR SOME INTEGRAL TRANSFORM ENFOLDING KERNELS OF MEIJER G FUNCTION TYPE

  • Al-Omari, Shrideh Khalaf
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.515-525
    • /
    • 2018
  • In this paper, we investigate a modified $G^2$ transform on a class of Boehmians. We prove the axioms which are necessary for establishing the $G^2$ class of Boehmians. Addition, scalar multiplication, convolution, differentiation and convergence in the derived spaces have been defined. The extended $G^2$ transform of a Boehmian is given as a one-to-one onto mapping that is continuous with respect to certain convergence in the defined spaces. The inverse problem is also discussed.

Power Quality Disturbances Detection and Classification using Fast Fourier Transform and Deep Neural Network (고속 푸리에 변환 및 심층 신경망을 사용한 전력 품질 외란 감지 및 분류)

  • Senfeng Cen;Chang-Gyoon Lim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.115-126
    • /
    • 2023
  • Due to the fluctuating random and periodical nature of renewable energy generation power quality disturbances occurred more frequently in power generation transformation transmission and distribution. Various power quality disturbances may lead to equipment damage or even power outages. Therefore it is essential to detect and classify different power quality disturbances in real time automatically. The traditional PQD identification method consists of three steps: feature extraction feature selection and classification. However, the handcrafted features are imprecise in the feature selection stage, resulting in low classification accuracy. This paper proposes a deep neural architecture based on Convolution Neural Network and Long Short Term Memory combining the time and frequency domain features to recognize 16 types of Power Quality signals. The frequency-domain data were obtained from the Fast Fourier Transform which could efficiently extract the frequency-domain features. The performance in synthetic data and real 6kV power system data indicate that our proposed method generalizes well compared with other deep learning methods.

An Algorithm of Score Function Generation using Convolution-FFT in Independent Component Analysis (독립성분분석에서 Convolution-FFT을 이용한 효율적인 점수함수의 생성 알고리즘)

  • Kim Woong-Myung;Lee Hyon-Soo
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.27-34
    • /
    • 2006
  • In this study, we propose this new algorithm that generates score function in ICA(Independent Component Analysis) using entropy theory. To generate score function, estimation of probability density function about original signals are certainly necessary and density function should be differentiated. Therefore, we used kernel density estimation method in order to derive differential equation of score function by original signal. After changing formula to convolution form to increase speed of density estimation, we used FFT algorithm that can calculate convolution faster. Proposed score function generation method reduces the errors, it is density difference of recovered signals and originals signals. In the result of computer simulation, we estimate density function more similar to original signals compared with Extended Infomax and Fixed Point ICA in blind source separation problem and get improved performance at the SNR(Signal to Noise Ratio) between recovered signals and original signal.

CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS OF UNBOUNDED FUNCTIONS ON A GENERALIZED WIENER SPACE

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1105-1127
    • /
    • 2013
  • Let C[0, $t$] denote the function space of real-valued continuous paths on [0, $t$]. Define $X_n\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ and $X_{n+1}\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+2}$ by $X_n(x)=(x(t_0),x(t_1),{\ldots},x(t_n))$ and $X_{n+1}(x)=(x(t_0),x(t_1),{\ldots},x(t_n),x(t_{n+1}))$, respectively, where $0=t_0 <; t_1 <{\ldots} < t_n < t_{n+1}=t$. In the present paper, using simple formulas for the conditional expectations with the conditioning functions $X_n$ and $X_{n+1}$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transforms and the conditional convolution products of the functions, which have the form $fr((v_1,x),{\ldots},(v_r,x)){\int}_{L_2}_{[0,t]}\exp\{i(v,x)\}d{\sigma}(v)$ for $x{\in}C[0,t]$, where $\{v_1,{\ldots},v_r\}$ is an orthonormal subset of $L_2[0,t]$, $f_r{\in}L_p(\mathbb{R}^r)$, and ${\sigma}$ is the complex Borel measure of bounded variation on $L_2[0,t]$. We then investigate the inverse conditional Fourier-Feynman transforms of the function and prove that the analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions can be expressed by the products of the analytic conditional Fourier-Feynman transform of each function.

Optimization of a QRS complex Detection Algorithm Using Discrete Wavelet Transform (이산 웨이블릿 변환을 이용한 QRS군 검출 알고리즘 최적화)

  • Lee, Keun-sang;Baek, Yong-hyun;Park, Young-chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.3
    • /
    • pp.45-50
    • /
    • 2010
  • In this study, Discrete Wavelet Transform(DWT), which can detect more correct QRS complex, approximated through impulse response for reducing complexity to suit real-time system during exercise. Also, rhythm information, which is Arrythmia, Bradycardia and Tachycardia, is provided through continuously monitoring QRS complex. Proposed algorithm is evaluated by computer simulation of ECG signal that is measured during exercise.

  • PDF

TRANSLATION THEOREMS FOR THE ANALYTIC FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PATHS ON WIENER SPACE

  • Chang, Seung Jun;Choi, Jae Gil
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.147-160
    • /
    • 2018
  • In this article, we establish translation theorems for the analytic Fourier-Feynman transform of functionals in non-stationary Gaussian processes on Wiener space. We then proceed to show that these general translation theorems can be applied to two well-known classes of functionals; namely, the Banach algebra S introduced by Cameron and Storvick, and the space ${\mathcal{B}}^{(P)}_{\mathcal{A}}$ consisting of functionals of the form $F(x)=f({\langle}{\alpha}_1,x{\rangle},{\ldots},{\langle}{\alpha}_n,x{\rangle})$, where ${\langle}{\alpha},x{\rangle}$ denotes the Paley-Wiener-Zygmund stochastic integral ${\int_{0}^{T}}{\alpha}(t)dx(t)$.

Analysis of Transient Response of an Engine to Throttle Tip-in/Tip-out (차량 감/가속시의 엔진의 동적 응답 해석)

  • 고강호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.122-128
    • /
    • 2002
  • In this paper dynamic responses of an engine, which is supported by hydraulic mount, to throttle tip-in/Tip out are analyzed. Because the hydraulic mounts have non-linearity that the characteristics of stiffness and damping vary with frequencies, it is difficult to analyze the dynamic behavior of an engine using general integral algorithms. Convolution integral and relationship between unit impulse response functions and frequency response functions are therefore used to simulate the transient behaviors of an engine indirectly. In time domain, impulse response functions are calculated by two-side discrete inverse courier transform of frequency response function achieved by laplace transform of equations of motion. Considering the fact that the shapes of behavior of an engine simulated by the proposed method are in good agreement with test results, it is confirmed that the proposed method is very effective for the analysis of transient response to throttle tip-in/out of an engine with hydraulic mounts.