• Title/Summary/Keyword: convolution transform

Search Result 149, Processing Time 0.055 seconds

Deep Learning based HEVC Double Compression Detection (딥러닝 기술 기반 HEVC로 압축된 영상의 이중 압축 검출 기술)

  • Uddin, Kutub;Yang, Yoonmo;Oh, Byung Tae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1134-1142
    • /
    • 2019
  • Detection of double compression is one of the most efficient ways of remarking the validity of videos. Many methods have been introduced to detect HEVC double compression with different coding parameters. However, HEVC double compression detection under the same coding environments is still a challenging task in video forensic. In this paper, we introduce a novel method based on the frame partitioning information in intra prediction mode for detecting double compression in with the same coding environments. We propose to extract statistical feature and Deep Convolution Neural Network (DCNN) feature from the difference of partitioning picture including Coding Unit (CU) and Transform Unit (TU) information. Finally, a softmax layer is integrated to perform the classification of the videos into single and double compression by combing the statistical and the DCNN features. Experimental results show the effectiveness of the statistical and the DCNN features with an average accuracy of 87.5% for WVGA and 84.1% for HD dataset.

Lightweight FPGA Implementation of Symmetric Buffer-based Active Noise Canceller with On-Chip Convolution Acceleration Units (온칩 컨볼루션 가속기를 포함한 대칭적 버퍼 기반 액티브 노이즈 캔슬러의 경량화된 FPGA 구현)

  • Park, Seunghyun;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1713-1719
    • /
    • 2022
  • As the noise canceler with a small processing delay increases the sampling frequency, a better-quality output can be obtained. For a single buffer, processing delay occurs because it is impossible to write new data while the processor is processing the data. When synthesizing with anti-noise and output signal, this processing delay creates additional buffering overhead to match the phase. In this paper, we propose an accelerator structure that minimizes processing delay and increases processing speed by alternately performing read and write operations using the Symmetric Even-Odd-buffer. In addition, we compare the structural differences between the two methods of noise cancellation (Fast Fourier Transform noise cancellation and adaptive Least Mean Square algorithm). As a result, using an Symmetric Even-Odd-buffer the processing delay was reduced by 29.2% compared to a single buffer. The proposed Symmetric Even-Odd-buffer structure has the advantage that it can be applied to various canceling algorithms.

Assessment of Image Registration for Pressure-Sensitive Paint (Pressure Sensitive Paint를 이용한 압력장 측정기술의 이미지 등록에 관한 연구)

  • Chang, Young-Ki;Park, Sang-Hyun;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.271-280
    • /
    • 2004
  • Assessment of image registration for Pressure Sensitive Paint (PSP) was performed. A 16 bit camera and LED lamp were used with Uni-FIB paint (ISSI). Because of model displacement and deformation at 'wind-on' condition, a large error of the intensity ratio was induced between 'wind-on' and' wind-off images. To correct the error, many kinds of image registrations were tested. At first, control points were marked on the model surface to find the coefficients of polynomial transform functions between the 'wind-off' 'wind-on' images. The 2nd-order polynomial function was sufficient for representing the model displacement and deformation. An automatic detection scheme was introduced to find the exact coordinates of the control points. The present automatic detection algorithm showed more accurate and user-friendly than the manual detection algorithm. Since the coordinates of transformed pixel were not integer, five interpolation methods were applied to get the exact pixel intensity after transforming the 'wind-on' image. Among these methods, the cubic convolution interpolation scheme gave the best result.

Determination of 2D solar wind speed maps from LASCO C3 observations using Fourier motion filter

  • Cho, Il-Hyun;Moon, Yong-Jae;Lee, Jin-Yi;Nakariakov, Valery;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.68-68
    • /
    • 2017
  • Measurements of solar wind speed near the Sun (< 0.1 AU) are important for understanding acceleration mechanism of solar wind as well as space weather predictions, but hard to directly measure them. For the first time, we provide 2D solar wind speed maps in the LASCO field of view using three consecutive days data. By applying the Fourier convolution and inverse Fourier transform, we decompose the 3D intensity data (r, PA, t) into the 4D one (r, PA, t, v). Then, we take the weighted mean along speed to determine the solar wind speeds that gives V(r, PA, t) in every 30 min. The estimated radial speeds are consistent with those given by an artificial flow and plasma blobs. We find that the estimated speeds are moderately correlated with those from slow CMEs and those from IPS observations. A comparison of yearly solar wind speed maps in 2000 and 2009 shows that they have very remarkable differences: azimuthally uniform distribution in 2000 and bi-modal distribution (high speed near the poles and low speed near the equator) in 2009.

  • PDF

A new Implementation of Perceptual LPC Cepstrum and its Application to Speech Recognition (인지 LPC cepstrum의 새로운 구현 및 음성인식에의 적용)

  • Kim, Jin-Young;Choi, Seong-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.61-64
    • /
    • 1996
  • To improve the performance of a recognition system, namely the recognition rate, we propose a hew implementation of perceptual distance using LPC cepstrum(perceptual cepstrum, PLC). The PLC is caculated by convolution of a usual LPC cepstrum and a perceptual lifter(PL). To caculate PL, we define a new weighting function in the linear frequency domain considering the frequency scale(Bark-scale) characteristics. The PL is the inverse Fourier transform of the exponents of the weighting function. We verified our method through the speech recognition experiments. The performance of PLC was compared with that of the rasied sine liftering method.

  • PDF

Windowed Wavelet Stereo Matching Using Shift ability (이동성(shift ability)을 이용한 윈도우 웨이블릿 스테레오 정합)

  • 신재민;이호근;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.1C
    • /
    • pp.56-63
    • /
    • 2003
  • In this paper, a wavelet-based stereo matching algorithm to obtain an accurate disparity map in wavelet transformed domain by using a shift ability property, a modified wavelet transform, the similarities for their sub-bands, and a hierarchical structure is proposed. New approaches for stereo matching by lots of feature information are to utilize translation-variant results of the sub-bands in the wavelet transformed domain because they cannot literally expect translation invariance in a system based on convolution and sub-sampling. After the similarity matching for each sub-band, we can easily find optimal matched-points because the sub-bands appearance of the shifted signals is definitely different from that of the original signal with no shift.

Linear Time Domain Analysis of Radiation Problems (시간영역법에 의한 강제동요시 동유체력 해석)

  • I.Y.,Gong;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.9-18
    • /
    • 1987
  • The hydrodynamic radiation forces acting on a ship travelling in waves have been conventionally treated by strip theories or by direct three dimensional approaches, most of which have been formulated in frequency domain. If the forward speed of a ship varies with time, or if its path is not a straight line, conventional frequency domain analysis can no more be used, and for these cases time domain analysis may be used. In this paper, formulations are made in time domain with applications to some problems the results of which are known in frequency domain. And the results of both domains are compared to show the characteristics and validity of time domain solutions. The radiation forces acting on a three dimensional body within the framework of a linear theory. If the linearity of entire system is assumed, radiation forces due to arbitrary ship motions can be expressed by the convolution integral of the arbitrary motion velocity and the so called impulse response function. Numerical calculations are done for some bodies of simple shapes and Series-60[$C_B=0.7$] ship model. For all cases, integral equation techniques with transient Green's function are used, and velocity or acceleration potentials are obtained as the solution of the integral equations. In liner systems, time domain solutions are related with frequency domain solutions by Fourier transform. Therefore time domain solutions are Fourier transformed by suitable relations and the results are compared with various frequency domain solutions, which show good agreements.

  • PDF

$2{\times}2$ DCT-Based Progressive Image Transmission with Spatial and Bit-rate Scalabilities (공간 및 비트율 계위를 갖는 $2{\times}2$ DCT 기반 순차 영상 전송)

  • 우석훈;원치선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1002-1011
    • /
    • 2000
  • In this paper, we propose a multiresolution progressive image transmission with spatial and bit-rate scalabilities using a $2{\times}2$ DCT. The multiresolition image represented by a $2{\times}2$ DCT is used for the progressive image transmission with spatial and bit-rate scalabilities. Because the proposed progressive image transmission method supports both spatial and bit-rate scalabilities, it can be adaptively applied to the receiver's scalability requests. We compare the proposed progressive transmission with that of the higher-order convolution-based Wavelet method. Comparisons show that the proposed method needs much less computations, but insignificant loss of image quality.

  • PDF

CNN-based In-loop Filter on TU Block (TU 블록 크기에 따른 CNN기반 인루프필터)

  • Kim, Yang-Woo;Jeong, Seyoon;Cho, Seunghyun;Lee, Yung-Lyul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.15-17
    • /
    • 2018
  • VVC(Versatile Video Coding)는 입력된 영상을 CTU(Coding Tree Unit) 단위로 분할하여 코딩하며, 이를 다시 QTBTT(Quadtree plus binary tree and triple tree)로 분할하고, TU(Transform Unit)도 이와 같은 단위로 분할된다. 따라서 TU의 크기는 $4{\times}4$, $4{\times}8$, $4{\times}16$, $4{\times}32$, $8{\times}4$, $16{\times}4$, $32{\times}4$, $8{\times}8$, $8{\times}16$, $8{\times}32$, $16{\times}8$, $32{\times}8$, $16{\times}16$, $16{\times}32$, $32{\times}16$, $32{\times}32$, $64{\times}64$의 17가지 종류가 있다. 기존의 VVC 참조 Software인 VTM에서는 디블록킹필터와 SAO(Sample Adaptive Offset)로 이루어진 인루프필터를 이용하여 에러를 복원하는데, 본 논문은 TU 크기에 따라서 원본블록과 복원블록의 차이(에러)가 통계적으로 다름을 이용하여 서로 다른 CNN(Convolution Neural Network)을 구축하고 에러를 복원하는 방법으로 VTM의 인루프 필터를 대체한다. 복원영상의 에러를 감소시키기 위하여 TU 블록크기에 따라 DenseNet의 Dense Block기반 CNN을 구성하고, Hyper Parameter와 복잡도의 감소를 위해 네트워크 간에 일부 가중치를 공유하는 모양의 Network를 구성하였다.

  • PDF

Dynamic analyses for an axially-loaded pile in a transverse-isotropic, fluid-filled, poro-visco-elastic soil underlain by rigid base

  • Zhang, Shiping;Zhang, Junhui;Zeng, Ling;Yu, Cheng;Zheng, Yun
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.53-63
    • /
    • 2022
  • Simplified analytical solutions are developed for the dynamic analyses of an axially loaded pile foundation embedded in a transverse-isotropic, fluid-filled, poro-visco-elastic soil with rigid substratum. The pile is modeled as a viscoelastic Rayleigh-Love rod, while the surrounding soil is regarded as a transversely isotropic, liquid-saturated, viscoelastic, porous medium of which the mechanical behavior is represented by the Boer's poroelastic media model and the fractional derivative model. Upon the separation of variables, the frequency-domain responses for the impedance function of the pile top, and the vertical displacement and the axial force along the pile shaft are gained. Then by virtue of the convolution theorem and the inverse Fourier transform, the time-domain velocity response of the pile head is derived. The presented solutions are validated, compared to the existing solution, the finite element model (FEM) results, and the field test data. Parametric analyses are made to show the effect of the soil anisotropy and the excitation frequency on the pile-soil dynamic responses.