본 논문은 MNIST 데이터셋을 활용한 손글씨 숫자 인식에서 합성곱 신경망(CNN)과 배치정규화(BN)를 결합한 모델을 제안한다. LeCun et al.의 LeNet-5 모델의 성과를 뛰어넘는 것을 목표로 6계층 신경망 구조를 설계하였다. 제안된 모델은 28×28 픽셀 이미지를 입력으로 받아 합성곱, 맥스 풀링, 완전연결계층을 거쳐 처리하며, 특히 배치정규화계층을 도입하여 학습 안정성과 성능을 향상시켰다. 실험에서는 60,000개의 훈련 이미지와 10,000개의 테스트 이미지를 사용하였으며, Momentum 최적화 알고리즘을 적용하였다. 모델 구성에서는 30개의 필터, 필터 사이즈 5×5, 패딩 0, 스트라이드 1을 사용하였고, ReLU 활성화 함수를 채택하였다. 훈련 과정에서는 미니배치 사이즈 100, 총 20 에포크, 학습률 0.1로 설정하였다. 결과적으로 제안된 모델은 99.22%의 테스트 정확도를 달성하여 LeNet-5의 99.05%를 상회하였으며, F1-score 0.9919를 기록하여 모델의 성능을 입증하였다. 또한, 본 논문에서 제안한 6계층 모델은 LeCun et al.의 LeNet-5(7계층 모델)와 Ji, Chun and Kim(10계층 모델)이 제안한 모델보다 더 단순한 구조로 모델의 효율성을 강조하였다. 본 연구의 결과는 AI 비전 검사기 등 실제 산업 응용에서 활용 가능성을 보여주며, 특히 스마트팩토리에서 부품의 불량 상태를 판별하는 데 효과적으로 적용될 수 있을 것으로 기대된다.
본 논문에서는 이동통신채널에서 발생하는 간섭현상을 제거하기 위한 적응형 채널추정(adaptive channel estimate) 알고리듬을 제안하였다. 기존 LMS 알고리듬은 입출력사이 오차를 줄이기 위해 사용하는 첫 기준신호의 선택에 따라 수렴속도와 오차정확도에 많은 영향을 받는다. 본 논문에서 제안한 적응형 채널추정 알고리듬은 간섭신호와 유사한 기준신호를 정하기 위해 LMS 알고리듬을 수행하기 전에 병렬의 컨볼루션 연산을 수행한다 컨볼루션 연산을 통해 출력된 신호는 채널의 지연시간과 진폭특성을 가지고 있어 간섭신호와 유사한 특성을 가진다. 제안된 알고리듬의 성능평가는 이동통신환경과 유사한 Jake's 모델에 Doppler 주파수는 130 Hz, Random한 5개의 경로가 존재하는 Rayliegh 다중경로 채널환경에서 실험하였다. 모의실험결과 기존 LMS 알고리듬은 데이터 150개를 반복 수행함으로써 약 -40 dB의 제곱오차수렴을 보였고 제안한 적응형 채널추정 알고리듬은 데이터 200개를 반복 수행함으로써 약 -80 dB의 제곱오차수렴을 보였다. 데이터의 반복연산에 따른 수렴속도는 다소 증가하였으나 제곱오차정확도는 약 40 dB의 우수한 개선특성을 보였다.
The purpose of this study is to estimate the flood discharge and runoff volume at a stream by using geomorphologic parameters obtained from the topographic maps following the law of stream classification and ordering by Horton and Strahier. The present model is modified from Cheng' s model which derives the geomorphologic instantaneous unit hydrograph. The present model uses the results of Laplace transformation and convolution intergral of probability density function of the travel time at each state. The stream flow velocity parameters are determined as a function of the rainfall intensity, and the effective rainfall is calculated by the SCS method. The total direct runoff volume until the time to peak is estimated by assuming a triangular hydrograph. The model is used to estimate the time to peak, the flood discharge, and the direct runoff at Andong, Imha. Geomchon, and Sunsan basin in the Nakdong River system. The results of the model application are as follows : 1.For each basin, as the rainfall intensity doubles form 1 mm/h to 2 mm/h with the same rainfall duration of 1 hour, the hydrographs show that the runoff volume doubles while the duration of the base flow and the time to peak are the same. This aggrees with the theory of the unit hydrograph. 2.Comparisions of the model predicted and observed values show that small relative errors of 0.44-7.4% of the flood discharge, and 1 hour difference in time to peak except the Geomchon basin which shows 10.32% and 2 hours respectively. 3.When the rainfall intensity is small, the error of flood discharge estimated by using this model is relatively large. The reason of this might be because of introducing the flood velocity concept in the stream flow velocity. 4.Total direct runoff volume until the time to peak estimated by using this model has small relative error comparing with the observed data. 5.The sensitivity analysis of velocity parameters to flood discharge shows that the flood discharge is sensitive to the velocity coefficient while it is insensitive to the ratio of arrival time of moving portion to that of storage portion of a stream and to the ratio of arrival time of stream to that of overland flow.
본 논문은 그래프 합성곱 신경망을 이용한 신경망 구조 탐색 모델 설계를 제안한다. 딥 러닝은 블랙박스로 학습이 진행되는 특성으로 인해 설계한 모델이 최적화된 성능을 가지는 구조인지 검증하지 못하는 문제점이 존재한다. 신경망 구조 탐색 모델은 모델을 생성하는 순환 신경망과 생성된 네트워크인 합성곱 신경망으로 구성되어있다. 통상의 신경망 구조 탐색 모델은 순환신경망 계열을 사용하지만 우리는 본 논문에서 순환신경망 대신 그래프 합성곱 신경망을 사용하여 합성곱 신경망 모델을 생성하는 GC-NAS를 제안한다. 제안하는 GC-NAS는 Layer Extraction Block을 이용하여 Depth를 탐색하며 Hyper Parameter Prediction Block을 이용하여 Depth 정보를 기반으로 한 spatial, temporal 정보(hyper parameter)를 병렬적으로 탐색합니다. 따라서 Depth 정보를 반영하기 때문에 탐색 영역이 더 넓으며 Depth 정보와 병렬적 탐색을 진행함으로 모델의 탐색 영역의 목적성이 분명하기 때문에 GC-NAS대비 이론적 구조에 있어서 우위에 있다고 판단된다. GC-NAS는 그래프 합성곱 신경망 블록 및 그래프 생성 알고리즘을 통하여 기존 신경망 구조 탐색 모델에서 순환 신경망이 가지는 고차원 시간 축의 문제와 공간적 탐색의 범위 문제를 해결할 것으로 기대한다. 또한 우리는 본 논문이 제안하는 GC-NAS를 통하여 신경망 구조 탐색에 그래프 합성곱 신경망을 적용하는 연구가 활발히 이루어질 수 있는 계기가 될 수 있기를 기대한다.
유한길이의 다중 송수신 쌍극자에 의한 수평다층구조의 시간영역 전자기장을 계산하기 위한 컴퓨터 프로그램을 개발하였다. 시간영역 반응은 주파수영역에서 계산된 값에 빠른 역푸리에변환(inverse fast Fourier transform: FFT)을 적용하여 효율적으로 얻을 수 있다. 먼저 대수영역에서 등간격으로 한 decade 당 10개의 주파수영역 반응을 구한 후 FFT를 적용시키기 위해 3차 스플라인 사이채움(cubic spline interpolation)을 실시한다. 이 때 위상의 경우에는 스플라인 사이채움 이전에 위상곡선을 연속적으로 만들어 주는 과정이 추가된다. 스플라인 사이채움된 자료들은 송신전류파형과 곱말기(convolution)를 한 후 FFT를 통해 시간영역 자료로 만들어진다. 이 논문에서는 step-off 파형만 고려하였다. 개발된 시간영역 프로그램은 해석해와 해양 탄화수소 저류층 모델에 대한 반응을 이용하여 검증하였으며, 그 결과는 충분히 정확함을 확인 할 수 있었다.
CNN (convolutional neural network)은 최근 가장 주목받는 인공지능 기법 중 하나이며 특히 영상 분류에서 기존의 기법에 비해 월등한 성능을 보인다. 본 논문에서는 CNN을 이용하여 다양한 거리 사진을 분류하고, 분류 결과를 이용하여 해당 거리에 대한 안전도의 평가 방법을 제안한다. 제안하는 기법은 CNN을 이용하여 총 네 가지 유형의 거리 사진에 대하여 학습을 수행하는 과정과 학습된 네트워크 모델을 바탕으로 해당 거리 사진의 분류와 안전도를 평가하는 과정을 포함한다. 거리 사진의 학습 과정에서는 네 가지 유형의 거리 사진 데이터셋을 수집하고 이 데이터를 증강시킨 후 CNN 학습을 수행한다. 학습된 CNN 모델은 주어진 입력 영상의 분류를 정확히 수행하고, 거리의 안전도는 각 유형에 대한 확률을 조합하여 정량적으로 계산한다.
본 논문은 chirp신호와 두 개의 근거리 청음기를 이용한 해저퇴적층의 음향학적 특성치 역산기법을 제시한다. 역산문제를 확률론적 모델로 정식화하고, 역산의 해를 역산인자의 a priori분포와 유사도함수의 곱으로 표현되는a posteriori 확률분포로 정의하였다. 퇴적층의 음속과 층두께의 a priori정보를 파형 매칭 기법으로 추정한 후 다수의 퇴적층이 존재하는 환경모델을 부분퇴적층모델로 치환하고, 계측신호와 모의신호의 L₂노음을 이용하여 정의된 목적함수에 대해 반복적인 유전자알고리즘 탐색을 수행하여 탐색공간의 축소로 인한 탐색효율과 결과의 향상을 얻었다. A posteriori 확률분포의 다중적분의 형태로 정의되는 인자의 주변확률분포와 평균의 추정은 유전자알고리즘의 탐색과정에서 선택된 탐색점들을 이용하여 수행되었다. 제시된 역산기법의 검증을 위해 두 가지 퇴적층 환경모델을 설정하고 잡음을 첨가한 합성신호에 대해 역산기법을 적용하여 역산해를 추정하였고 역산결과로부터 본 역산기법의 유용성을 확인하였다.
기존의 균열 검출 방법은 많은 인력과 시간, 비용이 소모되는 문제점이 있다. 이러한 문제를 해결하고자 차량이나 드론을 이용하여 취득한 영상에서 균열 정보를 파악하고 정보화하는 자동검출시스템이 요구되고 있다. 본 논문에서는 드론으로 촬영한 도로 영상에서의 균열 검출 연구를 진행한다. 획득한 항공영상은 전처리와 라벨링(Labeling) 작업을 통해 균열의 형태정보 데이터셋(data set)을 생성한다. 생성한 데이터셋을 Mask R-CNN(regions with convolution neural network) 딥러닝(deep learning) 모델에 적용하여 다양한 균열 정보가 학습된 새로운 모델을 획득하였다. 획득 모델을 이용한 실험 결과, 제시된 항공 영상에서 균열을 평균 73.5%의 정확도로 검출하였으며 특정 형태의 균열 영역도 예측하는 것을 확인할 수 있었다.
The aim of this study was to develop a marbling classification and prediction model using small parts of sirloin images based on a deep learning algorithm, namely, a convolutional neural network (CNN). Samples were purchased from a commercial slaughterhouse in Korea, images for each grade were acquired, and the total images (n = 500) were assigned according to their grade number: 1++, 1+, 1, and both 2 & 3. The image acquisition system consists of a DSLR camera with a polarization filter to remove diffusive reflectance and two light sources (55 W). To correct the distorted original images, a radial correction algorithm was implemented. Color images of sirloins of Hanwoo (mixed with feeder cattle, steer, and calf) were divided and sub-images with image sizes of 161 × 161 were made to train the marbling prediction model. In this study, the convolutional neural network (CNN) has four convolution layers and yields prediction results in accordance with marbling grades (1++, 1+, 1, and 2&3). Every single layer uses a rectified linear unit (ReLU) function as an activation function and max-pooling is used for extracting the edge between fat and muscle and reducing the variance of the data. Prediction accuracy was measured using an accuracy and kappa coefficient from a confusion matrix. We summed the prediction of sub-images and determined the total average prediction accuracy. Training accuracy was 100% and the test accuracy was 86%, indicating comparably good performance using the CNN. This study provides classification potential for predicting the marbling grade using color images and a convolutional neural network algorithm.
소프트웨어 정의 네트워크가 확장성, 유연성, 네트워크상 프로그래밍이 가능한 특징으로 네트워크 관리에서 표준으로 자리잡아 가고 있지만 많은 장점에도 불구하고 하나의 컨트롤러에 대한 사이버 공격이 전체 네트워크를 영향을 주는 문제점을 가지고 있다. 특히, 컨트롤러에 대한 DDoS 공격이 대표적인 사례로서 다양한 공격 탐지 기술에 대한 연구가 진행되고 있다. 본 논문에서는 최초로 84개 DDoS 공격 Feature 데이터셋을 Kaggle에서 획득한 후 Permutation Feature Importance 알고리즘을 이용하여 상위 20의 중요도를 갖는 Feature를 선택하여 딥 러닝 기반의 CNN 모델에서 학습과 검증을 수행하였다. 이를 통해, 최적의 공격 탐지율을 갖는 상위 13개의 DDoS Feature 선택이 DDoS 공격 탐지율 96%을 유지하면서 적정한 공격 탐지 시간, 정확성 등에서 매우 우수한 결과를 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.