DOI QR코드

DOI QR Code

A Scheme for Computing Time-domain Electromagnetic Fields of a Horizontally Layered Earth

수평다층구조에 대한 시간영역 전자기장의 계산법

  • Jang, Hangilro (Department of Energy Resources Engineering, Pukyong National University) ;
  • Kim, Hee Joon (Department of Energy Resources Engineering, Pukyong National University)
  • 장한길로 (부경대학교 에너지자원공학과) ;
  • 김희준 (부경대학교 에너지자원공학과)
  • Received : 2013.02.04
  • Accepted : 2013.07.26
  • Published : 2013.08.31

Abstract

A computer program has been developed to estimate time-domain electromagnetic (EM) responses for a onedimensional model with multiple source and receiver dipoles that are finite in length. The time-domain solution can be obtained by applying an inverse fast Fourier transform (FFT) to frequency-domain fields for efficiency. Frequency-domain responses are first obtained for 10 logarithmically equidistant frequencies per decade, and then cubic spline interpolated to get the FFT input. In the case of phases, the phase curve must be made to be continuous prior to the spline interpolation. The spline interpolated data are convolved with a source current waveform prior to FFT. In this paper, only a step-off waveform is considered. This time-domain code is verified with an analytic solution and EM responses for a marine hydrocarbon reservoir model. Through these comparisons, we can confirm that the accuracy of the developed program is fairly high.

유한길이의 다중 송수신 쌍극자에 의한 수평다층구조의 시간영역 전자기장을 계산하기 위한 컴퓨터 프로그램을 개발하였다. 시간영역 반응은 주파수영역에서 계산된 값에 빠른 역푸리에변환(inverse fast Fourier transform: FFT)을 적용하여 효율적으로 얻을 수 있다. 먼저 대수영역에서 등간격으로 한 decade 당 10개의 주파수영역 반응을 구한 후 FFT를 적용시키기 위해 3차 스플라인 사이채움(cubic spline interpolation)을 실시한다. 이 때 위상의 경우에는 스플라인 사이채움 이전에 위상곡선을 연속적으로 만들어 주는 과정이 추가된다. 스플라인 사이채움된 자료들은 송신전류파형과 곱말기(convolution)를 한 후 FFT를 통해 시간영역 자료로 만들어진다. 이 논문에서는 step-off 파형만 고려하였다. 개발된 시간영역 프로그램은 해석해와 해양 탄화수소 저류층 모델에 대한 반응을 이용하여 검증하였으며, 그 결과는 충분히 정확함을 확인 할 수 있었다.

Keywords

References

  1. Kim, H. J., 2011, A Scheme for compution Primary Fields in Modeling of Marine controlled-Source Electromagnetic Surveys, Geophysics and Geophysical Exploration, 14, 185-190.
  2. Kim, H. J., Choi, J. H., Han, N. R., Song, Y. H., and Lee, K. H., 2009, Primary Solution Evaluations for Interpretion Electromagnetic Data, Geophysics and Geophysical Exploration, 12, 361-366.
  3. Anderson, W. L., 1989, A hybrid fast Hankel transform algorithm for electromagnetic modeling, Geophysics, 54, 263-266. https://doi.org/10.1190/1.1442650
  4. Christensen, N. B., 1990, Optimized fast Hankel transform filters, Geophys. Prosp., 38, 545-568. https://doi.org/10.1111/j.1365-2478.1990.tb01861.x
  5. Christensen, N. B., 1991, Reply to comments by Walter L. Anderson, Geophys. Prosp., 39, 449-450. https://doi.org/10.1111/j.1365-2478.1991.tb00322.x
  6. Commer, M., and Newman, G., 2004, A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources, Geophysics, 69, 1192-1202. https://doi.org/10.1190/1.1801936
  7. Edwards, R. N., Law, L. K., Wolfgram, P. A., Nobes, D. C., Bone, M. N., Trigg, D. F., and DeLaurier, J. M., 1985, First results of the MOSES experiment: Sea sediment conductivity and thickness determination, Bute Inlet, British Columbia, by magnetometric offshore electrical sounding, Geophysics, 50, 153-160. https://doi.org/10.1190/1.1441825
  8. Guptasarma, D., 1982, Optimization of shorter digital linear filters for increased accuracy, Geophys. Prosp., 30, 501-514. https://doi.org/10.1111/j.1365-2478.1982.tb01320.x
  9. Guptasarma, D., and Singh, B., 1997, New digital linear filters for Hankel $J_0$ and $J_1$ transforms, Geophys. Prosp., 45, 745-762. https://doi.org/10.1046/j.1365-2478.1997.500292.x
  10. Holten, T., Flekkoy, E. G., Singer, B., Blixt, E. M., Hanssen, A., and Maloy, K. J., 2009, Vertical source, vertical receiver, electromagnetic technique for offshore hydrocarbon exploration, First Break, 27, 89-93.
  11. Hunziker, J., Slob, E., and Mulder, W., 2011, Effects of the airwave in time-domain marine controlled-source electromagnetics, Geophysics, 76, F251-F261. doi: 10.1190/1.3587222
  12. Jang, H., Jang, H., Lee, K. H., and Kim, H. J., 2013, Step-off, vertical electromagnetic responses of a deep resistivity layer buried in marine sediments, J. Geophys. Eng., (in print)
  13. Johansen, H. K., and Sorensen, K., 1979, Fast Hankel transforms, Geophys. Prosp., 27, 876-901. https://doi.org/10.1111/j.1365-2478.1979.tb01005.x
  14. Kim, H. J., Song, Y., and Lee, K. H., 1997, High-frequency electromagnetic inversion for a dispersive layered earth, J. Geomag. Geoelect., 49, 1439-1450. https://doi.org/10.5636/jgg.49.1439
  15. Lee, K. H., Jang, H., Jang, H., and Kim, H. J., 2011, Sensitivity analysis of marine controlled-source electromagnetic methods to a shallow gas-hydrate layer with 1D forward modeling, Geosci. Jour., 15, 297-303. https://doi.org/10.1007/s12303-011-0030-z
  16. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in Fortran, 2nd ed., Cambridge, 963p.
  17. Robinson, E. A., 1967, Multichannel time series analysis with digital computer programs, Holden-Day, 298p.
  18. Song, Y., Kim, H. J., and Lee, K. H., 2002, High-frequency electromagnetic impedance method for subsurface imaging, Geophysics, 67, 501-510. https://doi.org/10.1190/1.1468610
  19. Sorensen, K. I., and Christensen, N. B., 1994, The fields from a finite electrical dipole - A new computational approach, Geophysics, 59, 864-880. https://doi.org/10.1190/1.1443646
  20. Spies, B. R., and Frischknecht, F. C., 1991, Electromagnetic sounding, in Nabighian, M. N., ed., Electromagnetic methods in applied geophysics: Applications, Parts A and B, vol. 2, Soc. Expl. Geophys., 285-425.
  21. Ward, S. H., and Hohmann, G. W., 1988, Electromagnetic theory for geophysical applications, in Nabighian, M. N., ed., Electromagnetic Methods in Applied Geophysics, vol. 1, Soc. Expl. Geophys., 203-252.