• Title/Summary/Keyword: convolution model

Search Result 407, Processing Time 0.027 seconds

A Car Plate Area Detection System Using Deep Convolution Neural Network (딥 컨볼루션 신경망을 이용한 자동차 번호판 영역 검출 시스템)

  • Jeong, Yunju;Ansari, Israfil;Shim, Jaechang;Lee, Jeonghwan
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1166-1174
    • /
    • 2017
  • In general, the detection of the vehicle license plate is a previous step of license plate recognition and has been actively studied for several decades. In this paper, we propose an algorithm to detect a license plate area of a moving vehicle from a video captured by a fixed camera installed on the road using the Convolution Neural Network (CNN) technology. First, license plate images and non-license plate images are applied to a previously learned CNN model (AlexNet) to extract and classify features. Then, after detecting the moving vehicle in the video, CNN detects the license plate area by comparing the features of the license plate region with the features of the license plate area. Experimental result shows relatively good performance in various environments such as incomplete lighting, noise due to rain, and low resolution. In addition, to protect personal information this proposed system can also be used independently to detect the license plate area and hide that area to secure the public's personal information.

Improvement Performance of Inter-Vehicle Communication System in Millimeter Wave RF Channels (밀리미터파 무선통신로에서 차량간 통신 시스템의 성능개선)

  • Kim, Choon-Gu;Kang, Heau-Jo;Choi, Yong-Suk
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.2
    • /
    • pp.158-164
    • /
    • 2001
  • We presented a channel model for the inter vehicle radio link including the reflection from the road surface, side road vehicle and concrete wall. Then we theoretically derived the path loss and delay profile characteristics using the Ray tracing method efficiently analyzing millimeter wave or optic wave. Finally, we shown the improvement of propagation characteristics by diversity techniques, BCH coding and convolution coding techniques. At the result, MRC diversity techniques and BCH coding can't obtained PER = $10^{-6}$ which is considered to be data service criterion. But, we knew that Packet Error Rate Characteristic can obtained PER = $10^{-6}$, which is considered to be data service criterion, when convolution coding scheme are adopted in Rician fading.

  • PDF

DP-LinkNet: A convolutional network for historical document image binarization

  • Xiong, Wei;Jia, Xiuhong;Yang, Dichun;Ai, Meihui;Li, Lirong;Wang, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1778-1797
    • /
    • 2021
  • Document image binarization is an important pre-processing step in document analysis and archiving. The state-of-the-art models for document image binarization are variants of encoder-decoder architectures, such as FCN (fully convolutional network) and U-Net. Despite their success, they still suffer from three limitations: (1) reduced feature map resolution due to consecutive strided pooling or convolutions, (2) multiple scales of target objects, and (3) reduced localization accuracy due to the built-in invariance of deep convolutional neural networks (DCNNs). To overcome these three challenges, we propose an improved semantic segmentation model, referred to as DP-LinkNet, which adopts the D-LinkNet architecture as its backbone, with the proposed hybrid dilated convolution (HDC) and spatial pyramid pooling (SPP) modules between the encoder and the decoder. Extensive experiments are conducted on recent document image binarization competition (DIBCO) and handwritten document image binarization competition (H-DIBCO) benchmark datasets. Results show that our proposed DP-LinkNet outperforms other state-of-the-art techniques by a large margin. Our implementation and the pre-trained models are available at https://github.com/beargolden/DP-LinkNet.

Modulation Recognition of MIMO Systems Based on Dimensional Interactive Lightweight Network

  • Aer, Sileng;Zhang, Xiaolin;Wang, Zhenduo;Wang, Kailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3458-3478
    • /
    • 2022
  • Automatic modulation recognition is the core algorithm in the field of modulation classification in communication systems. Our investigations show that deep learning (DL) based modulation recognition techniques have achieved effective progress for multiple-input multiple-output (MIMO) systems. However, network complexity is always an additional burden for high-accuracy classifications, which makes it impractical. Therefore, in this paper, we propose a low-complexity dimensional interactive lightweight network (DilNet) for MIMO systems. Specifically, the signals received by different antennas are cooperatively input into the network, and the network calculation amount is reduced through the depth-wise separable convolution. A two-dimensional interactive attention (TDIA) module is designed to extract interactive information of different dimensions, and improve the effectiveness of the cooperation features. In addition, the TDIA module ensures low complexity through compressing the convolution dimension, and the computational burden after inserting TDIA is also acceptable. Finally, the network is trained with a penalized statistical entropy loss function. Simulation results show that compared to existing modulation recognition methods, the proposed DilNet dramatically reduces the model complexity. The dimensional interactive lightweight network trained by penalized statistical entropy also performs better for recognition accuracy in MIMO systems.

Handwriting Thai Digit Recognition Using Convolution Neural Networks (다양한 컨볼루션 신경망을 이용한 태국어 숫자 인식)

  • Onuean, Athita;Jung, Hanmin;Kim, Taehong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.15-17
    • /
    • 2021
  • Handwriting recognition research is mainly focused on deep learning techniques and has achieved a great performance in the last few years. Especially, handwritten Thai digit recognition has been an important research area including generic digital numerical information, such as Thai official government documents and receipts. However, it becomes also a challenging task for a long time. For resolving the unavailability of a large Thai digit dataset, this paper constructs our dataset and learns them with some variants of the CNN model; Decision tree, K-nearest neighbors, Alexnet, LaNet-5, and VGG (11,13,16,19). The experimental results using the accuracy metric show the maximum accuracy of 98.29% when using VGG 13 with batch normalization.

  • PDF

Deep Learning Model for Classification of Multiple Cancer Cell Lines (암세포 영상분류를 위한 심층학습 모델 연구)

  • Park, Jinhyung;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.394-396
    • /
    • 2021
  • Additional pathological tests using imaging equipment are essential before diagnosing cancer cells. Recently, in order to reduce the need for time and human resources in these fields, research related to the establishment of a system capable of automatic classification of cancer cells using artificial intelligence is being actively conducted. However, in both previous studies, there were relatively limited deep learning algorithms and cell types, and limitations existed with low accuracy at the same time. In this study, a method of performing 4class Classification on four types of cancer cells through the Convolution Neral Network, a type of in-depth learning. EfficientNet, ResNet, and Inception were used, and finally Resnet was used to obtain an accuracy of 96.11 on average for k-fold.

  • PDF

A Dual-scale Network with Spatial-temporal Attention for 12-lead ECG Classification

  • Shuo Xiao;Yiting Xu;Chaogang Tang;Zhenzhen Huang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2361-2376
    • /
    • 2023
  • The electrocardiogram (ECG) signal is commonly used to screen and diagnose cardiovascular diseases. In recent years, deep neural networks have been regarded as an effective way for automatic ECG disease diagnosis. The convolutional neural network is widely used for ECG signal extraction because it can obtain different levels of information. However, most previous studies adopt single scale convolution filters to extract ECG signal features, ignoring the complementarity between ECG signal features of different scales. In the paper, we propose a dual-scale network with convolution filters of different sizes for 12-lead ECG classification. Our model can extract and fuse ECG signal features of different scales. In addition, different spatial and time periods of the feature map obtained from the 12-lead ECG may have different contributions to ECG classification. Therefore, we add a spatial-temporal attention to each scale sub-network to emphasize the representative local spatial and temporal features. Our approach is evaluated on PTB-XL dataset and achieves 0.9307, 0.8152, and 89.11 on macro-averaged ROC-AUC score, a maximum F1 score, and mean accuracy, respectively. The experiment results have proven that our approach outperforms the baselines.

Multimode-fiber Speckle Image Reconstruction Based on Multiscale Convolution and a Multidimensional Attention Mechanism

  • Kai Liu;Leihong Zhang;Runchu Xu;Dawei Zhang;Haima Yang;Quan Sun
    • Current Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.463-471
    • /
    • 2024
  • Multimode fibers (MMFs) possess high information throughput and small core diameter, making them highly promising for applications such as endoscopy and communication. However, modal dispersion hinders the direct use of MMFs for image transmission. By training neural networks on time-series waveforms collected from MMFs it is possible to reconstruct images, transforming blurred speckle patterns into recognizable images. This paper proposes a fully convolutional neural-network model, MSMDFNet, for image restoration in MMFs. The network employs an encoder-decoder architecture, integrating multiscale convolutional modules in the decoding layers to enhance the receptive field for feature extraction. Additionally, attention mechanisms are incorporated from both spatial and channel dimensions, to improve the network's feature-perception capabilities. The algorithm demonstrates excellent performance on MNIST and Fashion-MNIST datasets collected through MMFs, showing significant improvements in various metrics such as SSIM.

Image Processing by a Diffusion Neural Network (확산뉴런망을 이용한 영상처리)

  • Kwon, Yool;Nam, Ki-Gon;Yoon, Tae-Hoon;Kim, Jae-Chang
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.1
    • /
    • pp.90-98
    • /
    • 1993
  • A Gaussian is formed by diffusing a spot excitation. In this paper, a diffusion neural network model is derived from the diffusion equation. And it is shown that a difference of two Gaussians(DOG) may have the same shape as a Laplacian of Gaussian(LOG), A neural network model executing a DOG convolution by diffusing an external excitation is proposed. By this model intensity changes of image may be detected. This model may be implemented economically because each neuron has only four fixed-valued synapes.

  • PDF

Mechanical Model of Displacement-based Time Domain Transmitting Boundary for Flexible Dam-Reservoir Interactions (유연한 댐-호소의 상호작용을 위한 변위 기초 시간 영역 전달 경계의 역학적 모델)

  • 이진호;김재관;조정래
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.232-237
    • /
    • 2003
  • A new displacement-based transmitting boundary is developed for the transient analysis of dynamics interactions between flexible dam body and reservoir impounding compressible water The mechanical model is derived analytically in time domain from the kernel function, Bessel function, appearing in the convolution integral and corresponding mechanical model is developed that consists of mass, damping and stiffness matrices. The resulting system of, equations uses displacement degrees of freedom. Hence it can be coupled directly with the displacement-based solid finite element model of dam body, linear of nonlinear. The method was applied to the rigid and flexible dam models. The results showed very good agreement : with the semi-analytic frequency domain solutions.

  • PDF