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Abstract 

 
Automatic modulation recognition is the core algorithm in the field of modulation 
classification in communication systems. Our investigations show that deep learning (DL) 
based modulation recognition techniques have achieved effective progress for multiple-input 
multiple-output (MIMO) systems. However, network complexity is always an additional 
burden for high-accuracy classifications, which makes it impractical. Therefore, in this paper, 
we propose a low-complexity dimensional interactive lightweight network (DilNet) for MIMO 
systems. Specifically, the signals received by different antennas are cooperatively input into 
the network, and the network calculation amount is reduced through the depth-wise separable 
convolution. A two-dimensional interactive attention (TDIA) module is designed to extract 
interactive information of different dimensions, and improve the effectiveness of the 
cooperation features. In addition, the TDIA module ensures low complexity through 
compressing the convolution dimension, and the computational burden after inserting TDIA 
is also acceptable. Finally, the network is trained with a penalized statistical entropy loss 
function. Simulation results show that compared to existing modulation recognition methods, 
the proposed DilNet dramatically reduces the model complexity. The dimensional interactive 
lightweight network trained by penalized statistical entropy also performs better for 
recognition accuracy in MIMO systems. 
 
 
Keywords: automatic modulation recognition, multiple-input multiple-output(MIMO), 
lightweight network, two-dimensional interactive attention, penalized statistical entropy 
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1. Introduction 

Automatic modulation recognition is an important technique for analyzing unauthorized 
users in non-cooperative communications. In addition, the accurate recognition of modulation 
types provides essential technical support for parameter estimation, demodulation, and 
interference of received signals.[1]-[4] Therefore, the concept of modulation recognition has 
been widely studied since proposed.  

The existing automatic modulation classification techniques mainly include two kinds of 
methods. i.e. the maximum likelihood detection method and the other is the feature 
classification method. In [5], J.B.Tamakuwala propose a maximum-likelihood-based 
modulation recognition method. However, the computational complexity is too high and there 
are more requirements for the acquisition of prior information. The author of [6] propose a 
novel decision-theoretic approach to modulation classification for MIMO systems, where the 
channel state information (CSI), the number of transmit antennas, and the noise variance could 
be unknown. This approach reduces the need for prior information in the maximum likelihood 
method, but the computational complexity is still not effectively addressed. Therefore, more 
and more scholars solve the problem of modulation recognition by studying pattern 
recognition methods that could eliminate the limitation of prior information. The pattern 
recognition method mainly includes two processes: feature extraction and feature 
classification. In the paper thesis [7] and [8], the feature extraction includes instantaneous 
features, high-order cumulant features (HOC), and cyclic spectral features. The HOC can 
effectively overcome the additive white Gaussian noise (AWGN). The cyclic spectral features 
also have good noise immunity due to the cyclic smooth and stable characteristic. In addition, 
some scholars have also made important contributions to the research under non-Gaussian 
noise environments.[9]-[10] The authors use the adaptive weight myriad filter to preprocess 
the impulse noise in the received signal and propose an evolutionary neural network based on 
the quantum elephant herding algorithm (QEHA) to classify the modulated signal.[11] These 
methods usually have a good classification effect in single-in single-out (SISO) systems [12]-
[13], but the space-time aliasing caused by the MIMO channel seriously degrades the 
effectiveness of the classical methods. Therefore, the traditional pattern recognition method 
can no longer adequately meet the needs of modulation recognition in the MIMO systems. 

 Recently, deep learning (DL) has been widely used in modulation recognition due to its 
robust feature extraction and accurate classification capabilities. T.OShea and J.Hoydis in [14] 
first combine the Convolutional Neural Network (CNN) network with the modulation 
recognition algorithm and achieved far better performance than traditional algorithms. This is 
a milestone advancement in the research process of modulation recognition problems. 
Different from conventional pattern recognition methods, feature extraction is developed from 
artificial features to neural network features. The sampled data in the modulation recognition 
includes mainly the in-phase/quadrature (I/Q) information of the signal and the constellation 
map information of the amplitude-phase mapping. In [15]-[18], Long Short-Term Memory 
(LSTM) and Convolutional Long Short-Term Deep Neural Network (CLDNN) are proposed 
to take signal I/Q information as input. Y.Mao proposed a graph neural network based on 
constellation map information that possesses excellent performance for phase modulation 
signal recognition in literature [19]. However, all these methods require a large number of 
training samples and the model is very computationally intensive. Existing networks all use 
SISO system received signal as a sample data set for recognition. The modulation 
characteristics of MIMO systems received signals are severely fading and can not be reliably 
classified by the network. Therefore, the modulation recognition problem for MIMO systems 
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requires the design of a novel network that can not only recognize the signal modulation 
method with high accuracy but also keep the low complexity of the network.  

In response to above questions, Y. Wang proposed a cooperative decision algorithm based 
on the CNN network in [20]. The cooperative decision algorithm effectively solves the 
problem of large errors in judging the modulation type. But it also generates recognition 
divergence among different sub-results, which is very limited to the improvement of 
recognition in low SNR environments, and it is also difficult to achieve 100% accuracy in high 
SNR environments. In [21], the CNN-based zero-forcing (ZF) equalization method was 
proposed for MIMO systems. However, this approach is strongly influenced by channel prior 
information estimation accuracy.  

Summarizing the above problems, this paper designs a lightweight network with little 
influence from prior information by fully considering the two critical factors of classification 
accuracy and algorithm complexity of the MIMO system. The input samples of the lightweight 
network are the I/Q information of the signals received by all antennas. Additionally, it is 
found in [18]-[23] that adding an attention module to a deep learning network can significantly 
improve classification accuracy. The attention module can effectively guide the network to 
extract the network features needed for classification, just as humans consciously learn 
essential knowledge. Therefore, this paper designs a two-dimensional interactive attention 
mechanism (TDIA). The TDIA module is used to extract the time series interaction 
information and the channel interaction information. Different channels correspond to 
different receiving antennas. Then, the dimensional interactive lightweight network (DilNet) 
designed in this paper introduces depth-wise separable convolution (DSC) to reduce the 
complexity of the residual structure. The DSC drastically reduces the complexity of the 
algorithm at the cost of small classification accuracy, but it greatly improves the lightness of 
the DilNet. Finally, the DilNet is trained through the penalized statistical entropy loss function. 
The simulation results show that the DilNet can accurately classify the modulation methods 
and greatly reduce the complexity. The main contributions of this paper are as follows. 
 The TDIA extracts the cooperative features of the received signals from different 

antennas. The experiment results show that the TDIA module can efficiently extract the 
interaction information of spatial dimension and channel dimension. The network features 
would have two-dimensional interaction characteristics, which could significantly improve the 
classification accuracy of digitally modulated signals in MIMO systems. 
 We designed a dimensional interactive lightweight network (DilNet) with four 

residual layers and reduced the complexity of convolutional operations by depth-wise 
separable convolution (DSC). The TDIA module is embedded in the DilNet network. 
Compared with existing networks, this network has higher classification accuracy and lower 
complexity. But it usually requires more training epoch times to obtain a better classification 
model. 
 We define a novel way of calculating the loss function. This method uses penalized 

statistical entropy to calculate the incremental output information for each residual layer and 
weigh it. Compared with the method of calculating loss function by cross-entropy, the 
proposed method could improve the classification accuracy of DilNet significantly.  

2. MIMO Signal Model And Dataset Generation 
In Fig. 1, the MIMO system consists of six processes: random generation of symbols, 
baseband modulation, power normalization, signal format reconstruction, antenna 
transmission, and antenna reception. The receiver guarantees random reception of all 
transmitted signals. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 10, October 2022                           3461 

 

R
andom

 data

M
odulation

N
orm

alization

R
eshape

T
ransm

itter

R
eceiver

... ...... ...

( )1x

X
( )2x

( )1tNx −

( )tNx

( )1y

( )2y

( )1rNy −

( )rNy

x

 
Fig. 1. MIMO system signal generation 

2.1 MIMO System And Signal Generation 
Digital signal modulation obtains different modulated signals by controlling the carrier 

wave frequency, amplitude, and phase characteristics. The signal modulated by different 
modulation methods not only has the same information as the original signal but also enhances 
the transmission efficiency. The mathematical models of modulation types in this paper are 
shown below.  

Phase-shift keying (PSK) signal is a phase modulated signal. And the PSK signal modulated 
by using a rectangular pulse ( (.)g ) can be expressed as 

 ( ) ( ) ( )cos 2MPSK s c n
n

X t g t nT πf t φ 
= − + 
 
∑   (1) 

where nφ  represents the phase of the -thn  symbol in the signal. cf  is the carrier frequency, 

sT  is the symbol period.  
Quadrature amplitude modulation (QAM) signals are phase and amplitude modulated 

signals that can be expressed as 

 ( ) ( ) ( )cos 2MQAM n s c n
n

S t a g t nT πf t φ 
= − + 
 
∑   (2) 

where na  represents the amplitude of the -thn  symbol and other parameters have the same 
meaning as (1). 

It is assumed that the MIMO channel has tN  transmit antennas and rN  receive antennas 

( )t rN N≤ , MIMO channel is a flat-fading and time-invariant channel. The received signal at 
the time -thk  can be expressed as  

 R Gk k ky x     (3) 
where ( ) ( ) ( )[ 1 , 2 , , ]T

k k k k tx x x x N= …  is the modulated signal vector ( )1tN × , 

( ) ( ) ( )[ 1 , 2 , , ]y y y y T
k k k k rN= … is the received baseband signal vector ( )1rN ×  , kG is 

additive white Gaussian noise.  
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   (4) 

where R  is the ( )r tN N×  MIMO channel matrix with mean equal to 0 and variance equal to 
1, and N ,Nr t

r  represents the channel parameter. In addition, the matrix R obeys a complex 
Gaussian distribution. 
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2.2 Dataset Generation 
This paper generates the data set with modulation types (2PSK, 4PSK, 8PSK, 16QAM) 
according to the MIMO system signal model. The sample dataset generation process is shown 
in Fig. 1. The vector of modulated signals can be given as [ ]1 2, , ,X X X X N= … , N  represents 
the length of the signal vector. To reasonably distinguish X  from different modulation types, 
the power of the signal is normalized as x . It is assumed that the number of transmitting 
antennas is tN . The normalized signal x  can be reshaped as [ (1), (2),..., ( )]x x x T

tN , with 
dimension /t tN N N× . The signal transmitted by one of the antennas can be expressed as

1 2 /( ) [ ( ), ( ), , ( )]x x x x
t

T
N Nj j j j= … , [1, ]tj N∈ . The -thj  transmitter antenna, ( )x j has the 

/ tN N  continuously transmitted symbols. Continuous signals of length / tN N transmitted by 

tN antennas pass through a MIMO channel, where the MIMO channel model R  obeys the 
complex Gaussian distribution. The noise environment is additive white Gaussian noise. The 
signal will be received by rN antennas and the baseband signal will be obtained by frequency 
conversion. The receiver sampled signal can be expressed  [ (1), (2), , ( )]y y y y T

rN= … , with 
dimension ( )/r D tN f N N× × . The -thi antenna receiver sampled signal

1 2 /( ) [ ( ), ( ), , ( )]
tDf N Ny i y i y i y i×= … , [1, ]ri N∈ , with length /D tf N N×  . Df is the number of 

sampling points for per symbol.  
In the MIMO system, the signals received by different antennas correspond to different 

channel dimensions, and the in-phase and quadrature parts of the signals correspond to the 

spatial dimensions. The format of the sample dataset is
2

Y y, y
r D

t

NN f
N C W HR R

 
× × ×   × × = ∈ ∈ , 

= rC N  is the number of sample channels (number of receiving antennas ), = 2W  is the sample 
width (the in-phase and quadrature information of the received signal) and = /D tH f N N  is 
the sample length (received signal length). Because the signals transmitted by the transmit 
antennas are modulated in the same way, extracting the cooperative features of the signals 
received by all antennas helps to correctly classify the signal modulations. 

 

3. Proposed Dimensional Interactive Lightweight Network Method 

3.1 Two-dimensional Interactive Attention Mechanism 
In MIMO system, the signals are mainly affected by environmental noise and space-time 

aliasing from different transmit antenna signals. Due to the transmit antennas being modulated 
in the same way, space-time aliasing will lead to severe fading of signal amplitude and phase 
variation features. Antenna diversity is the use of two receive channels, their fading effects are 
uncorrelated. It is very unlikely that both will experience the same deep fade point at the same 
time. When combining the signals from the two antennas, the degree of fading can be reduced. 
Space-diversity approach can overcome space-selective fading. Therefore, the classification 
of the modulation in the MIMO system needs to consider the received signals of all antennas. 

Liang proposes a two-dimensional attention mechanism module that can effectively extract 
channel and spatial features. [18] This approach verifies the positive impact of the attention 
mechanism module on feature extraction. Therefore, this paper designs a TDIA module to help 
the network extract the collaborative interaction features of signals from different antennas. 
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The interaction information extracted by the TDIA module includes spatial interaction 
information among different sampling points, channel interaction information among different 
receiving antennas, and channel spatial across dimensions interaction information.  
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Fig. 2. Two-dimensional interactive attention mechanism 
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In Fig. 2, TDIA consists of two parts I and II. I is to extract the interaction feature of channel 
and spatial from the sampled signals through two branches, respectively. In the first branch, 
the spatial information is averagely pooled by the (5) to obtain independent channel 
information. 

 
1 1

1Y Y
W H

gap wh
w hWH = =

= ∑∑   (5) 

where 1 1Y C
gap R × ×∈  represents the global average pooling of the input feature Y C W HR × ×∈ . 

Different channel information is extracted by the sliding window method, and the sliding 
window size is WS . The WS  adjacent channel information is placed in the same spatial 
dimension through sliding window processing in Fig. 3. The feature size of the channel 
information becomes 1Y W

W

S C
S R × ×∈ , and transpose converts the dimension toY W

W

C S
S R ×∈ . Each 

channel contains the information of K  adjacent channels. Extracting the interaction 
information of adjacent channels can be done by convolution, and the specific calculation is 
as follows: 
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Equation (6), ( )g Y
n
wC S× represents the -thn  extraction of interaction information in traversing 

the window of size WS , ⊗  is the matrix operation symbol for the same channel

( )( )1,   Y
TC C C

C K Cn n K α α− ++  × …  . The interaction information of each channel under the same 

window is extracted by one-dimensional convolution (Conv1D), α is the convolution weight 
parameter, and K  is the convolution kernel size. The interaction information of K  adjacent 
channels can be extracted by one convolution. 

 ( )
( )( )

( )( )( )1
1, 1Y f g YW W

W

C S K C S
S K

× − + ×
− +

=     (7) 

where ( )( )1, 1f
WS K− +  is the statistics of all interaction information in the compressed window 

after one traversal, the feature size of the channel information becomes (S K 1)Y WCR × − +∈ . The 
interaction information of WS  adjacent channels can not be extracted by one traversal of 
convolution when the sliding window is larger than the convolution kernel. Loop traversal 
until output channel interaction feature size is 1Y CR ×∈ , complete WS  channel interaction 
information extraction. 

In the second branch of Fig. 2, the input feature size is reshaped to Y H W CR × ×∈ and the 
spatial information is compressed into 1 1Y H

gap R × ×∈  by average pooling. At this time, the 

feature size extracted by the sliding window is Y W

W

H S
S R ×∈ . After traversing all the 

information of the window through the convolution operation, the feature size becomes
(S K 1)Y WHR × − +∈ . Unlike the first branch, the output feature 1Y HR ×∈  after loop traversal 

expands the feature size to 1Y CR ×∈  by the convolution operation with kernel size 1 when the 
lengths of H  and C  are different.  
 ( )2 ,Y Y YC C Hcat× =     (8) 
The work of part II is the interaction of channel and spatial features. In formula (8), the 

channel interaction information and spatial interaction information obtained by the two 
branches in part I are spliced ( )cat  as 2 2Y C CR× ×∈ . Next, the interactive information of 
splicing feature is extracted by Conv1D. The feature contains a column of spatial information 
and a column of channel information, so only one convolution is needed to complete the 
interaction of spatial and channel information. The output feature size is 1 1Y C CR× ×∈ . 
 ( )1Y Y C

weight δ ×=   (9) 

  Y Y Yout weight= ×    (10) 
Finally, the interactive features are output through the sigmoid activation function δ . The 

dimension size of the output feature is expanded from 1Y C
weight R ×∈  to 1 1Y C

weight R × ×∈  and 

applied to the input information as a weight. 1 1C
weight RY × ×∈  and C W HRY × ×∈  are the same in the 

first dimension. Therefore, they are multiplied together in the first dimension. The output 
feature size of TDIA isY C W H

out R × ×∈ , and the feature size does not change compared to the 
input feature. However, the output of the TDIA module realizes channel interaction, spatial 
interaction, and channel-space interaction by adding weight information. We obtain weighted 
output features with two-dimensional interaction characteristics and realize the extraction of 
cooperative features of received signals from different antennas. In section 4, we will fully 
verify the effectiveness of the TDIA module through comparative experiments. 
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3.2 Dep-thwise Separable Convolution 
The difference between depth-wise separable convolution (DSC) and standard convolution 

is that the standard convolution has only one step of convolution processing. However, DSC 
consists of two steps: depth-wise convolution and point-wise convolution. Depth-wise 
convolution only processes spatial information within one channel, while point convolution is 
a standard convolution with a convolution kernel size of 1 1×  , which is a centralized process 
of channel information. The DSC completes one channel and spatial information process by 
concatenating depth-wise convolution and point-wise convolution. 

 

 
Fig. 4. Standard convolution  

    
(a)                                                                               (b) 

Fig. 5. Depth-wise separable convolution (a) Depth-wise convolution (b) Point-wise convolution 
 

By comparing Fig. 4 and Fig. 5, we can find the different structures of the depth separable 
convolution and the standard convolution. The size of the input feature is Y i i iC W HR × ×∈  and 
output feature size is Y o o oC W HR × ×∈ by the standard convolution. When the size of the 
convolution kernel for extracting spatial features is W HD D× , the standard convolution 
parameter and the calculation amount are i o W HC C D D× × ×  and i o W H o oC C D D W H× × × × ×  , 
respectively. In the case where the input feature size and output feature size are the same, the 
parameter of depth-wise convolution is i W HC D D× ×  and the parameter of point-wise 
convolution is i oC C× . The calculation amount of depth-wise convolution is  

i W H o oC D D W H× × × ×  and the calculation amount of point-wise convolution is

i o o oC C W H× × × . Therefore, the parameter ratio of depth-wise separable convolution and 
standard convolution can be expressed as 

 /
1 1i W H i o

D S
i o W H o W H

C D D C CP
C C D D C D D
× × + ×

= = +
× × × ×

  (11) 

the calculation ratio can be expressed as: 

 /
1 1i W H o o i o o o

D S
i o W H o o o W H

C D D W H C C W HC
C C D D W H C D D

× × × × + × × ×
= = +

× × × × × ×
  (12) 

It can be seen from (10) and (11) that the DSC method divides the convolution into depth-
wise convolution and point-wise convolution, which reduces the number of convolution 
parameters and calculations. We will apply DSC to the network in this paper in a reasonable 
way. 
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3.3 Dimensional Interactive Lightweight Network Structure 
The residual structure usually has an excellent performance in classification problems. [27]-

[29] Based on the residual structure, this paper designs a dimensional interactive lightweight 
network (DilNet) for modulation recognition in MIMO systems. The residual structure can 
efficiently improve the classification accuracy of the network, but high complexity is often 
difficult to practice. Therefore, the depth-wise separable convolution is introduced to replace 
the standard convolution in the residual structure to reduce the network complexity. In addition, 
the performance of deep neural network models for image recognition in signal recognition is 
limited. The number of model channels grows with the number of network layers. However, 
the network features of the signal are relatively easy to extract. Increasing the number of 
channels in the hidden layer is not conducive to network convergence. Therefore, the number 
of network channels proposed in this paper decreases as the depth of the model increases. 
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Fig. 6. Dimensional interactive lightweight network structure 

 
The proposed network consists of downsampling, feature extraction, and feature 

classification, which can be seen in Fig. 6. Among them, downsampling is composed of two-
dimensional standard convolution (Conv2D) to prevent serious information loss during 
downsampling. As the core part of the network, feature extraction consists of residual block 
and TDIA module, which is used to extract efficient cross-dimensional interaction features. 
The feature classifier outputs the classification results through the fully connected layer. 
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Fig. 7. (a) Standard residual block (b) DSC residual block 
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In Fig. 7 (a) and Fig. 7 (b), the difference between the DSC residual block and the standard 
residual is that the DSC residual block uses depth-wise convolution to process spatial 
information. The number of channels is not dilated in the first two-dimensional convolution 
(Conv2D) ensuring that the output feature sizes are the same as standard convolutions. 
Standard convolution processes spatial information and completes the dilation of channel 
information in the first Conv2D, which are calculated according to formulas (11) and (12) as 
follows: 

 ( )/
1 1( )( )i W H i o i

D S
i o o W H i o o W H

C D D C C CP
C C C D D C C C D D

× × + ×
= = +

+ × × × + ×
  (13) 

 ( )/
1 1( )( )i W H o o i o o o i

D S
i o o W H o o i o o W H

C D D W H C C W H CC
C C C D D W H C C C D D

× × × × + × × ×
= = +

+ × × × × × + ×
  (14) 

It can be seen from (12) and (13) that compared with the standard residual block, the DSC 
residual block designed in this paper has significantly reduced parameters and calculations. 
Then, the TDIA module is embedded behind the DSC, which makes the features extracted by 
each DSC residual block have two-dimensional interactive characteristics. 

 
Table 1. The structural parameters of dimensional interactive lightweight network 

No. Structure 
1 Conv2D (channel( rN  , 16), kernel ( 7 7× )) +BN+Relu 
2 DSC (channel(16,512), kernel (1 3× )) +BN+Relu+TDIA 
3 DSC (channel(512,256), kernel (1 3× )) +BN+Relu+TDIA 
4 DSC (channel(256,128), kernel (1 3× )) +BN+Relu+TDIA 
5 DSC (channel(128,64), kernel (1 3× )) +BN+Relu+TDIA 
6 Linear( Μ ) + Softmax  

In Table 1, we provide the specific layout of DilNet, where Conv2D is standard 
convolutional layer. BN is to prevent overfitting, Linear is fully-connected layer and Relu is 
activation function.  

3.4 Penalized Statistical Entropy 
 

Table 2. Penalized Statistical Entropy 
Algorithm 1  The Penalized Statistical Entropy Method. 
Input Y is the sample to be classified. 
Output loss j  is the loss value after the -thj  iteration. 

1: N is the number of one batch samples; L is the number of residual layers; ( )'
( )j

nip l is the 

prediction result of the -thj iteration and the -thl residual layers; ( )j
nip l is the probability. 

2: for 1l   to L  do 
3: The -thl  residual layer extracts features are classified by the fully connected layer, where the 

probability distribution is
( )

( )

'

'

( )

( )

1

( )
j

ni

j
ni

p l
j

ni N p l

n

ep l
e

=

=

∑
. 

4: Calculate the loss function: ( ) ( )1

1 1

1loss loss ( ) log ( )
N I

jj j j
l l ni ni

n i
y l p l

N
−

= =

= × ×∑∑ . 

5: end for 



3468                                                                                      Sileng et al.: Modulation Recognition of MIMO Systems  
Based on Dimensional Interactive Lightweight Network 

6: The statistical loss function: ( )1j

1

1loss loss
L

j
l

lL
−

=

= − ∑   

7: return loss j   
As one of the calculation methods of loss function, cross-entropy is widely used in training 

modulation recognition models. The softmax function usually converts the network output into 
a probability distribution. This process can be defined as 

 

( )

( )

'

'

1

ni

ni

p

ni N
p

n

ep
e

=

=

∑
   (15) 

where ( )'
nip  is the network prediction, nip is the predicted probability after processing by the 

softmax function. i is one of the classification result labels of sample -thn .  

 ( )
1 1

1loss log
N I

ni ni
n i

y p
N = =

= − ∑∑   (16) 

where N  is the total number of samples, I is the number of all classification categories. niy
is the true sample distribution probability.  

The cross-entropy loss function can effectively statistics output information, but only 
calculate the cross-entropy of the output layer. In the lightweight network, the feature 
extraction of each residual layer after adding the attention module will have an important 
impact on the classification results due to the small number of network layers. It is necessary 
to gather loss information for the output features of each residual layer. Therefore, this article 
proposes penalized statistical entropy to calculate the loss function, which can be designed in 
Table 2. 

loss j
l represents the cross-entropy of the -thl  network layer during the -thj  round of 

iteration. If the loss of a certain layer suddenly increases, it will affect the loss of the 
corresponding layer in the next iteration process. We define this problem as the unqualified 
feature extraction effect of this layer, and use the loss to punish the corresponding layer in the 
next iteration. 1 1 1

1 2loss ,  loss , ,  lossj j j
L

− − − …  is the penalty term for the hidden layer that needs 
statistical penalty loss information during the -thj  iteration. The network avoids finding 
locations that lead to penalties to reduce the loss. When the loss of each layer is minimized by 
this method, the loss statistics of the entire network will also be reduced, each layer can extract 
efficient classification features, and the recognition rate of the network will also be 
significantly improved. 

4. Simulation Results 
Table 3. The simulation parameters of modulation signals 

No. Parameter Value 
sN   Symbol length 128 

df   Symbol rate 500 symbol/s 

cf   Carrier frequency 2000 Hz 
sf   Sampling frequency 16000 Hz 
Df   Number of sampling points for per symbol 16 

SNR   Signal-to-noise ratio [-10,10] 
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Table 4. The environment parameters of DilNet 
No. Parameter Value 

Batch_size   Number of samples taken in one training 32 
CPU   Central processing unit i7-11800 
RAM   Random access memory DDR4 16GB 
GPU   Graphics processing unit RTX3060 6GB 

N   Number of samples per modulated signal per SNR   10000 
Ratio   The ratio of training set and test set 4:1 

WS   Sliding window size for TDIA modules 5 
K   Conv1D kernel size in TDIA module 3 

 
We fully verify the performance of DilNet proposed in this paper for modulation  

classification in MIMO system. Types of modulated signals include{2PSK, 4PSK, 8PSK, 
16QAM }. We experiment on two cases in the MIMO channel, one is that the number of 
antennas at the transmitting is equal to the receiving 4,  4t rN N   , and the other is that the 
number of antennas at the transmitting is less than the receiving 2,  4t rN N  .  

The noise environment in a MIMO channel is Gaussian white noise, and it is defined as 
follows: 

 10lg( )s

G

ESNR
E

    (17) 

where SNR  is the signal-to-noise ratio, sE is signal power, and GE is noise power. The two 
classification performance evaluation rules can be expressed as: 
  

 100%
snr

snr correct
cc

test

SP
S

= ×    (18) 

 
10

10
snr
correctave snr

cc
test snr

S
P

S N
=−=
×

∑   (19) 

Where snr
ccP  is the accuracy of a single SNR. ave

ccP is the average accuracy of all SNRs. testS is 
the number of samples in the testset, snr

correctS is the number of correctly classified samples in the 
testset; snrN is the number of SNRs. In addition, we also verify the DilNet classification 
accuracy in the absence of SNR priors, and DilNet excellent performance in computational 
complexity. The simulation parameters of modulation signals and the environment parameters 
of DilNet is presented in Table 3 and Table 4. 

4.1 Performance Comparisons of TDIA 
In this section, we compare the proposed TDIA module with other attention modules. In the 

attention module comparison, we guarantee the criterion that the embedding modules are in 
the same network. 
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       (a)                                                                           (b) 

Fig. 8. The classification performance of different modules: (a) 2  4t rN N   (b) 4  4t rN N    
 
Fig. 8(a) and Fig. 8(b) show the classification performance of the same network embedded 

with different attention modules. When the number of transmit antennas is less than the 
number of receive antennas, the classification accuracy of digitally modulated signals is higher. 
It can be observed that the TDIA module has higher classification performance than CBAM 
and CPAM modules. The CBAM module can help the network extract effective features from 
the channel and space dimensions, but it can not extract interactive information. The 
modulation recognition of MIMO system needs to make cooperative decisions on the received 
signals of all antennas. Therefore, it is very important to extract the cross-dimensional 
interaction information. This is the reason for the poor performance of the CBAM module. 
The CPAM interacts with all channel and spatial information, resulting in information 
redundancy. This is an important reason why the recognition accuracy is lower than TDIA. 
Besides, the DilNet is trained by using the penalty statistical entropy loss function. Compared 
with to the TDIA network trained by the cross-entropy loss function, the experiment results 
show that the penalty statistical entropy can improve the overall recognition accuracy of the 
signal. This proves that the supervision of the hidden layer is effective. The classification 
accuracy is improved by about 1%-5% at low SNRs.  

4.2 Performance Comparisons of DilNet with Other Automatic Modulation 
Classification Method 

In this section, we compare the proposed network with typical modulation recognition 
methods. In the network comparison, we follow the same guidelines for the number of network 
layers and the parameters of the hidden layer. Using the characteristic that the high-order 
cumulant (HOC) of Gaussian noise is 0, the interference of noise can be effectively reduced. 
Therefore higher-order cumulant features are used to distinguish modulated signals.[12] The 
traditional HOC feature extraction method is as follows:  
 *[ ( ) ( ) ]p q q

pq j jM E y t y t−=   (20) 
where ( )jy t  is the signal received by the -thj  antenna at time t , pqM  is p-order mixing 
moment, and , [.]E is the mathematical expectation function. Next, HOC features will be 
extracted based on the mixing moments.  
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According to (21) the theoretical value of the HOC can be calculated. The theoretical values 
of the four signals are shown in Table 5. 

It can be seen from Table 5 that the HOC features can distinguish four kinds of modulation 
signals. This traditional method usually uses the support vector machine (SVM) as the 
classifier, so this paper will also compare it. 

 
Table 5. Higher order cumulant theoretical value 

Type 2PSK 4PSK 8PSK 16QAM 

40C   -2 -1 0 -0.68 
41C   -2 0 0 0 

42C   -2 -1 -1 -0.68 
 
The performance of different typical methods is shown in Fig. 9 (a) and Fig. 9 (b), the 

classification accuracy of the traditional method based on the HOC feature is significantly 
lower than that of the convolution feature method extracted by the DL, and it can not be 
accurately classified at high SNRs when t rN N . Because the signal is severely fading in the 
MIMO channel, the traditional features are affected and distorted. The Co-proposed method 
is to calculate each CNN model independent output results and make a cooperative decision. 
However, cooperative features are not extracted in the feature extraction process. There is a 
lack of information compensation among different antennas. Therefore, the DL methods for 
extracting cooperative features are significantly better than the Co-proposed method. In 
addition, comparing the lightweight network proposed in this paper with the other three 
existing networks (Resnet10, CNN, MobilenetV2), it can be found that the classification 
accuracy of MobilenetV2, a typical lightweight network, is lower than that of Resnet10 and 
CNN networks. The reason for the above situation is that existing lightweight network 
methods reduce network complexity by sacrificing classification accuracy. In this paper, the 
method of embedding the attention module and training the network with penalized statistical 
entropy is used to compensate for the classification accuracy without greatly increasing the 
complexity of the network. The experimental results show that the lightweight network 
proposed in this paper has the best classification accuracy. 

 

                   
   (a)                                                                        (b) 

Fig. 9. The classification performance of different mothods: (a) 2  4t rN N   (b) 4  4t rN N    
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(a)                                                                (b) 

Fig. 10. 2  4t rN N  , DilNet confusion matrix for the modulation classification. (a)
SNR 10dB   (b) SNR 6dB   

 

                
(a)                                                              (b) 

Fig. 11. 4  4t rN N  , DilNet confusion matrix for the modulation classification. (a) SNR 2dB   
(b) SNR 2dB  

 
In order to observe the effect of DilNet on each signal classification, Fig. 10 and Fig. 11 

show experimental results through confusion matrix. By observing Fig. 10 (a) and Fig. 11 (a) 
that 8PSK and 16QAM signals have lower classification accuracy. There are many types of 
phases of these two signals, and the phase fading is severe in the MIMO channel transmission 
process. The phase characteristics are unclear and difficult to distinguish. By observing Fig. 
10 (b) and Fig. 11 (b) that when the SNR is greater than -6dB and -2dB, all signals have 
classification accuracy greater than 99%. 

4.3 Performance of DilNet in Mixed SNR and Small Sample Datasets 
We compare the performance of some classical modulation recognition methods in the 

absence of SNR priors, where SNR [ 10, 10] ∈ −  dB and step size 2 takes 11 SNRs in this paper. 
We mix all SNR samples for training, the average recognition rate ave

ccP  can be calculated by 
(18). snr

ccP is the performance of the mixed SNR model at each SNR. The training dataset in 
the mixed SNR dataset is 20% of the total sample dataset. The ratio of training set, test set, 
and validation set is 4:1:4. The performance of different typical methods is shown in Table 6 
and Table 7. 
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Table 6. 2  4t rN N  , the performance of different typical methods in mixed SNR 

Method 10
ccP   8

ccP  6
ccP  4

ccP  2
ccP  0

ccP  2
ccP  4

ccP  6
ccP  8

ccP  10
ccP  ave

ccP   

Proposed 0.897 0.968 0.989 0.998 0.998 1 1 1 1 1 1 0.986 
Resnet10 0.863 0.967 0.987 0.999 0.999 0.999 1 1 1 1 1 0.983 

MobilenetV2 0.736 0.892 0.973 0.995 0.998 0.998 1 1 1 1 1 0.963 
CNN 0.849 0.914 0.978 0.997 0.998 0.999 1 1 1 1 1 0.976 
CO- 

Proposed 0.728 0.806 0.909 0.925 0.994 0.999 0.999 1 1 1 1 0.942 

Traditional 0.210 0.245 0.30 0.450 0.585 0.700 0.965 0.950 0.975 0.985 0.995 0.669 

 
Table 7. 4  4t rN N  , the performance of different typical methods in mixed SNR 

Method 10
ccP   8

ccP  6
ccP  4

ccP  2
ccP  0

ccP  2
ccP  4

ccP  6
ccP  8

ccP  10
ccP  ave

ccP   

Proposed 0.607 0.764 0.785 0.907 0.926 0.941 0.979 0.994 0.998 0.998 0.999 0.900 
Resnet10 0.608 0.774 0.793 0.916 0.907 0.912 0.987 0.991 0.994 0.994 0.998 0.897 

MobilenetV2 0.460 0.669 0.718 0.831 0.782 0.804 0.881 0.926 0.955 0.983 0.988 0.818 
CNN 0.578 0.718 0.76 0.862 0.844 0.863 0.963 0.969 0.979 0.987 0.995 0.865 
CO- 

Proposed 0.476 0.578 0.622 0.653 0.692 0.767 0.778 0.777 0.842 0.934 0.975 0.736 

Traditional 0.265 0.265 0.235 0.345 0.265 0.36 0.545 0.545 0.525 0.496 0.615 0.406 
 

In Table 6 and Table 7, the experiment results show that the DilNet has the highest 
classification accuracy. WhenSNR [ 8, 2] dB∈ − − , the traditional and MobilenetV2 methods 
show the phenomenon of the accuracy decreases. Because the traditional method can hardly 
meet the requirements of MIMO system signal recognition through traditional feature 
classification. The MobilenetV2 method only seeks to reduce the complexity of the network, 
which leads to a decrease in the ability of network feature extraction. Therefore, there is no 
guarantee that the classification accuracy will increase with the increase of SNR. While 
reducing the network complexity, DilNet ensures the efficiency of feature extraction through 
the TDIA module and penalized statistical entropy. DilNet has good performance in the 
absence of SNR priors. The average recognition rate of DilNet is higher than Resnet10, but 
the recognition rate of some SNRs is lower than Resnet10. Because reducing the complexity 
of the model through DSC will also affect the model classification ability. Besides, the 
performance of CO-Proposed in mixed SNR also proves that the method of cooperative feature 
classification is superior to cooperative decision. 

Table 8 and Table 9 exhibit the recognition accuracy of different methods in the small 
sample dataset. When the training dataset is larger than 3% of the sample dataset, DilNet has 
the highest recognition rate. However, the recognition rate of DilNet is lower than that of 
Resnet10, when the training dataset is less than 3% of the sample dataset. In the process of 
reducing the weight of the network, a part of the classification accuracy needs to be sacrificed. 
When the samples are sufficient, the classification accuracy can be compensated by efficient 
supervised training methods and reasonable attention module assistance. When the number of 
samples is small, the disadvantage of DilNet is difficult to eliminate. Simulation experiments 
show that when the number of samples in the dataset is larger than 5%, DilNet can guarantee 
classification accuracy. 
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Table 8. 2  4t rN N  , the performance of different typical methods in small sample datasets 

Sample size 3% 5% 10% 20% 

Proposed 0.937 0.962 0.974 0.986 
Resnet10 0.952 0.960 0.967 0.983 

MobilenetV2 0.923 0.928 0.943 0.963 
CNN 0.932 0.954 0.961 0.976 

CO- Proposed 0.898 0.915 0.931 0.942 
Traditional 0.379 0.418 0.602 0.669 

 
Table 9. 4  4t rN N  , the performance of different typical methods in small sample datasets 

Sample size 3% 5% 10% 20% 

Proposed 0.788 0.837 0.861 0.900 
Resnet10 0.813 0.821 0.859 0.897 

MobilenetV2 0.692 0.735 0.783 0.818 
CNN 0.752 0.812 0.849 0.865 

CO- Proposed 0.657 0.689 0.702 0.736 
Traditional 0.309 0.327 0.375 0.406 

4.4 Performance of DilNet on Computational Complexity and Convergence 
Table 10 shows the computational complexity of different methods. Parameters is model 

parameter size, and FLOPs are the amount of computation required by the model to classify a 
single sample. The model train and test times are the average training and testing times per 
epoch. The number of transmitting antennas does not affect the analysis of the complexity 
regular, so this paper chooses to analyze the case of 4  4t rN N   . 

 
Table 10. Computational complexity performance 

Method Train(s) Test(s) Parameters(MB) FLOPs(MB) 

CPAM 36.8 2.7 3.11 144.64 
CBAM 23.1 1.8 1.78 54.08 
TDIA 16.9 1.5 1.48 46.72 

Resnet10 85.3 5.8 28.49 1071.34 
CNN 14.7 1.3 6.02 301.44 

MobilenetV2 36.9 2.5 4.52 428.48 
Proposed 18.1 1.6 1.49 47.04 

 

TDIA completes the interaction of channel and spatial information in the channel dimension 
and effectively reduces the complexity of the attention module through dimensional reshaping 
and Conv1D. Compared with CBAM and CPAM, the time complexity and space complexity 
of TDIA are significantly reduced. The penalty statistical entropy training network is based on 
the output information of the fully connected layer for statistics of each hidden layer loss. 
Therefore, time and space complexity are slightly improved compared to cross-entropy. 
Besides, compared with Resnet10 with the same number of residual layers, our network 
reduces the computational time and space complexity by 78.78% and 94.75%. The network 
proposed in this paper also has obvious advantages compared to CNN and MobilenetV2. 
However, the train and test time is higher than that of the CNN network, the residual structure 
is usually an important reason for the increased time complexity. 
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Fig. 12. The training accuracy of the different methods, where the number of training epoch times 

increases. 
 

When the number of training epoch times increases, the training accuracy of models will be 
changed as shown in Fig. 12. Compared with CPAM, Resnet10, and CNN, the TDIA module 
requires more training epoch times to obtain the best training model. However, the TDIA 
module is prone to overfitting, resulting in a decrease in classification accuracy, when there 
are too many training epoch times. After adding penalized statistical entropy to our network, 
the problem of overfitting is solved, and the training accuracy is significantly improved. This 
experiment proves that the DilNet requires more training epoch times to obtain a better trained 
model. We will do further research on this issue in future work. 

5. Conclusion 
This paper proposes a dimensional interactive lightweight network for modulation 

recognition in MIMO systems. The lightweight network based on the TDIA module is used to 
extract cooperate features, and the network is trained by penalized statistical entropy. The 
experiment results demonstrate that the TDIA module has the best classification accuracy and 
the lowest computational complexity among three attention modules in the same network 
structure. When the lightweight network chooses the penalty statistical entropy as the loss 
function, training results are significantly improved on the original basis, with a slight extra 
computation needed. Additionally, the lightweight network also performs better than 
traditional HOC method, the cooperative modulation recognition method, and other neural 
networks in mixed SNR and small-sample datasets. 
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