• Title/Summary/Keyword: convex points

Search Result 204, Processing Time 0.026 seconds

Approximation of Common Fixed Points for a Family of Non-Lipschitzian Mappings

  • Kim, Tae-Hwa;Park, Yong-Kil
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.701-712
    • /
    • 2009
  • In this paper, we first introduce a family S = {$S_n$ : C ${\rightarrow}$ C} of non-Lipschitzian mappings, called total asymptotically nonexpansive (briefly, TAN) on a nonempty closed convex subset C of a real Banach space X, and next give necessary and sufficient conditions for strong convergence of the sequence {$x_n$} defined recursively by the algorithm $x_{n+1}$ = $S_nx_n$, $n{\geq}1$, starting from an initial guess $x_1{\in}C$, to a common fixed point for such a continuous TAN family S in Banach spaces. Finally, some applications to a finite family of TAN self mappings are also added.

STRONG CONVERGENCE THEOREMS FOR NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY-MONOTONE MAPPINGS IN A BANACH SPACE

  • Liu, Ying
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.627-639
    • /
    • 2010
  • In this paper, we introduce a new iterative sequence finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly-monotone mapping in a Banach space. Then we show that the sequence converges strongly to a common element of two sets. Using this result, we consider the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly-monotone mapping, the fixed point problem and the classical variational inequality problem. Our results improve and extend the corresponding results announced by many others.

Performance Analysis of Noise Barriers of Complicated End Shapes (복잡한 끝단 형상을 갖는 방음벽의 성능해석)

  • 김현실;김재승;강현주;김봉기;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.224-228
    • /
    • 2003
  • A new analytic method is presented for predicting the performance of noise barriers having complicated end shapes like "Y", "T", inverted L, and other shapes. The insertion loss of the barrier is predicted by summation of multiple diffractions occurring at the comer points. Although previous studies treated diffractions occurring only at the convex points, the method presented in this paper considers diffractions at the concave point. As numerical examples, a partially inclined noise barrier and "T" shape noise barrier are studied. It is shown that the diffraction at the concave point may be neglected if the shortest path does not include the concave comer point.

  • PDF

On triple sequence space of Bernstein-Stancu operator of rough Iλ-statistical convergence of weighted g (A)

  • Esi, A.;Subramanian, N.;Esi, Ayten
    • Annals of Fuzzy Mathematics and Informatics
    • /
    • v.16 no.3
    • /
    • pp.337-361
    • /
    • 2018
  • We introduce and study some basic properties of rough $I_{\lambda}$-statistical convergent of weight g (A), where $g:{\mathbb{N}}^3{\rightarrow}[0,\;{\infty})$ is a function statisying $g(m,\;n,\;k){\rightarrow}{\infty}$ and $g(m,\;n,\;k){\not{\rightarrow}}0$ as $m,\;n,\;k{\rightarrow}{\infty}$ and A represent the RH-regular matrix and also prove the Korovkin approximation theorem by using the notion of weighted A-statistical convergence of weight g (A) limits of a triple sequence of Bernstein-Stancu polynomials.

ROI Based Object Extraction Using Features of Depth and Color Images (깊이와 칼라 영상의 특징을 사용한 ROI 기반 객체 추출)

  • Ryu, Ga-Ae;Jang, Ho-Wook;Kim, Yoo-Sung;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.395-403
    • /
    • 2016
  • Recently, Image processing has been used in many areas. In the image processing techniques that a lot of research is tracking of moving object in real time. There are a number of popular methods for tracking an object such as HOG(Histogram of Oriented Gradients) to track pedestrians, and Codebook to subtract background. However, object extraction has difficulty because that a moving object has dynamic background in the image, and occurs severe lighting changes. In this paper, we propose a method of object extraction using depth image and color image features based on ROI(Region of Interest). First of all, we look for the feature points using the color image after setting the ROI a range to find the location of object in depth image. And we are extracting an object by creating a new contour using the convex hull point of object and the feature points. Finally, we compare the proposed method with the existing methods to find out how accurate extracting the object is.

A Study on The Improvement of Douglas-Peucker's Polyline Simplification Algorithm (Douglas-Peucker 단순화 알고리듬 개선에 관한 연구)

  • 황철수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.117-128
    • /
    • 1999
  • A Simple tree-structured line simplification method, which exactly follows the Douglas-Peucker algorithm, has a strength for its simplification index to be involved into the hierarchical data structures. However, the hierarchy of simplification index, which is the core in a simple tree method, may not be always guaranteed. It is validated that the local property of line features in such global approaches as Douglas-Peucker algorithm is apt to be neglected and the construction of hierarchy with no thought of locality may entangle the hierarchy. This study designed a new approach, CALS(Convex hull Applied Line Simplification), a) to search critical points of line feature with convex hull search technique, b) to construct the hierarchical data structure based on these critical points, c) to simplify the line feature using multiple trees. CALS improved the spatial accuracy as compared with a simple tree method. Especially CALS was excellent in case of line features having the great extent of sinuosity.

  • PDF

REGIONS OF VARIABILITY FOR GENERALIZED α-CONVEX AND β-STARLIKE FUNCTIONS, AND THEIR EXTREME POINTS

  • Chen, Shaolin;Huang, Aiwu
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.557-569
    • /
    • 2010
  • Suppose that n is a positive integer. For any real number $\alpha$($\beta$ resp.) with $\alpha$ < 1 ($\beta$ > 1 resp.), let $K^{(n)}(\alpha)$ ($K^{(n)}(\beta)$ resp.) be the class of analytic functions in the unit disk $\mathbb{D}$ with f(0) = f'(0) = $\cdots$ = $f^{(n-1)}(0)$ = $f^{(n)}(0)-1\;=\;0$, Re($\frac{zf^{n+1}(z)}{f^{(n)}(z)}+1$) > $\alpha$ (Re($\frac{zf^{n+1}(z)}{f^{(n)}(z)}+1$) < $\beta$ resp.) in $\mathbb{D}$, and for any ${\lambda}\;{\in}\;\bar{\mathbb{D}}$, let $K^{(n)}({\alpha},\;{\lambda})$ $K^{(n)}({\beta},\;{\lambda})$ resp.) denote a subclass of $K^{(n)}(\alpha)$ ($K^{(n)}(\beta)$ resp.) whose elements satisfy some condition about derivatives. For any fixed $z_0\;{\in}\;\mathbb{D}$, we shall determine the two regions of variability $V^{(n)}(z_0,\;{\alpha})$, ($V^{(n)}(z_0,\;{\beta})$ resp.) and $V^{(n)}(z_0,\;{\alpha},\;{\lambda})$ ($V^{(n)}(z_0,\;{\beta},\;{\lambda})$ resp.). Also we shall determine the extreme points of the families of analytic functions which satisfy $f(\mathbb{D})\;{\subset}\;V^{(n)}(z_0,\;{\alpha})$ ($f(\mathbb{D})\;{\subset}\;V^{(n)}(z_0,\;{\beta})$ resp.) when f ranges over the classes $K^{(n)}(\alpha)$ ($K^{(n)(\beta)$ resp.) and $K^{(n)}({\alpha},\;{\lambda})$ ($K^{(n)}({\beta},\;{\lambda})$ resp.), respectively.

Extraction and Modeling of Curved Building Boundaries from Airborne Lidar Data (항공라이다 데이터의 건물 곡선경계 추출 및 모델링)

  • Lee, Jeong Ho;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.117-125
    • /
    • 2012
  • Although many studies have been conducted to extract buildings from airborne lidar data, most of them assume that all the boundaries of a building are straight line segments. This makes it difficult to model building boundaries containing curved segments correctly. This paper aims to model buildings containing curved segments as combination of straight lines and arcs. First, two sets of boundary points are extracted by adaptive convex hull algorithm and local convex hull algorithm with a larger radius. Then, arc segments are determined by average spacing of boundary points and intersection ratio of perpendicular lines. Finally, building boundary is modeled through regularization of least squares line or circle fitting. The experimental results showed that the proposed method can model the curved building boundaries as arc segments correctly by completeness of 69% and correctness of 100%. The approach will be utilized effectively to create automatically digital map that meets the conditions of the Korean digital mapping.

A Fast Shortest Path Algorithm Between Two Points inside a Segment-Visible Polygon (선분가시 다각형 내부에 있는 두 점 사이의 최단 경로를 구하는 빠른 알고리즘)

  • Kim, Soo-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.369-374
    • /
    • 2010
  • The shortest path between two points inside a simple polygon P is a minimum-length path among all paths connecting them which don't pass by the exterior of P. A linear time algorithm for computing the shortest path in a general simple polygon requires triangulating a polygon as preprocessing. The linear time triangulating is known to very complex to understand and implement it. It is also inefficient in case that the input without very large size is given because its time complexity has a big constant factor. In this paper, we present the customized shortest path algorithm for a segment-visible polygon which is a simple polygon weakly visible from an internal line segment. Our algorithm doesn't require triangulating as preprocessing and consists of simple procedures such as construction of convex hulls, so it is easy to implement and runs very fast in linear time.

An Estimation Model for Defence Ability Using Big Data Analysis in Korea Baseball

  • Ju-Han Heo;Yong-Tae Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.119-126
    • /
    • 2023
  • In this paper, a new model was presented to objectively evaluate the defense ability of defenders in Korean professional baseball. In the proposed model, using Korean professional baseball game data from 2016 to 2019, a representative defender was selected for each team and defensive position to evaluate defensive ability. In order to evaluate the defense ability, a method of calculating the defense range for each position and dividing the calculated defense area was proposed. The defensive range for each position was calculated using the Convex Hull algorithm based on the point at which the defenders in the same position threw out the ball. The out conversion score and victory contribution score for both infielders and outfielders were calculated as basic scores using the defensive range for each position. In addition, double kill points for infielders and extra base points for outfielders were calculated separately and added together.