• 제목/요약/키워드: convex hypersurface

검색결과 14건 처리시간 0.021초

ROLLING STONES WITH NONCONVEX SIDES II: ALL TIME REGULARITY OF INTERFACE AND SURFACE

  • Lee, Ki-Ahm;Rhee, Eun-Jai
    • 대한수학회지
    • /
    • 제49권3호
    • /
    • pp.585-604
    • /
    • 2012
  • In this paper we consider the evolution of the rolling stone with a rotationally symmetric nonconvex compact initial surface ${\Sigma}_0$ under the Gauss curvature flow. Let $X:S^n{\times}[0,\;{\infty}){\rightarrow}\mathbb{R}^{n+1}$ be the embeddings of the sphere in $\mathbb{R}^{n+1}$ such that $\Sigma(t)=X(S^n,t)$ is the surface at time t and ${\Sigma}(0)={\Sigma}_0$. As a consequence the parabolic equation describing the motion of the hypersurface becomes degenerate on the interface separating the nonconvex part from the strictly convex side, since one of the curvature will be zero on the interface. By expressing the strictly convex part of the surface near the interface as a graph of a function $z=f(r,t)$ and the non-convex part of the surface near the interface as a graph of a function $z={\varphi}(r)$, we show that if at time $t=0$, $g=\frac{1}{n}f^{n-1}_{r}$ vanishes linearly at the interface, the $g(r,t)$ will become smooth up to the interface for long time before focusing.

SOME RESULTS OF EXPONENTIALLY BIHARMONIC MAPS INTO A NON-POSITIVELY CURVED MANIFOLD

  • Han, Yingbo
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1651-1670
    • /
    • 2016
  • In this paper, we investigate exponentially biharmonic maps u : (M, g) ${\rightarrow}$ (N, h) from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. We obtain that if $\int_{M}e^{\frac{p{\mid}r(u){\mid}^2}{2}{\mid}{\tau}(u){\mid}^pdv_g$ < ${\infty}$ ($p{\geq}2$), $\int_{M}{\mid}{\tau}(u){\mid}^2dv_g$ < ${\infty}$ and $\int_{M}{\mid}d(u){\mid}^2dv_g$ < ${\infty}$, then u is harmonic. When u is an isometric immersion, we get that if $\int_{M}e^{\frac{pm^2{\mid}H{\mid}^2}{2}}{\mid}H{\mid}^qdv_g$ < ${\infty}$ for 2 ${\leq}$ p < ${\infty}$ and 0 < q ${\leq}$ p < ${\infty}$, then u is minimal. We also obtain that any weakly convex exponentially biharmonic hypersurface in space form N(c) with $c{\leq}0$ is minimal. These results give affirmative partial answer to conjecture 3 (generalized Chen's conjecture for exponentially biharmonic submanifolds).

A CLASS OF INVERSE CURVATURE FLOWS IN ℝn+1, II

  • Hu, Jin-Hua;Mao, Jing;Tu, Qiang;Wu, Di
    • 대한수학회지
    • /
    • 제57권5호
    • /
    • pp.1299-1322
    • /
    • 2020
  • We consider closed, star-shaped, admissible hypersurfaces in ℝn+1 expanding along the flow Ẋ = |X|α-1 F, α ≤ 1, β > 0, and prove that for the case α ≤ 1, β > 0, α + β ≤ 2, this evolution exists for all the time and the evolving hypersurfaces converge smoothly to a round sphere after rescaling. Besides, for the case α ≤ 1, α + β > 2, if furthermore the initial closed hypersurface is strictly convex, then the strict convexity is preserved during the evolution process and the flow blows up at finite time.

INTRODUCTION OF T -HARMONIC MAPS

  • Mehran Aminian
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제30권2호
    • /
    • pp.109-129
    • /
    • 2023
  • In this paper, we introduce a second order linear differential operator T□: C (M) → C (M) as a natural generalization of Cheng-Yau operator, [8], where T is a (1, 1)-tensor on Riemannian manifold (M, h), and then we show on compact Riemannian manifolds, divT = divTt, and if divT = 0, and f be a smooth function on M, the condition T□ f = 0 implies that f is constant. Hereafter, we introduce T-energy functionals and by deriving variations of these functionals, we define T-harmonic maps between Riemannian manifolds, which is a generalization of Lk-harmonic maps introduced in [3]. Also we have studied fT-harmonic maps for conformal immersions and as application of it, we consider fLk-harmonic hypersurfaces in space forms, and after that we classify complete fL1-harmonic surfaces, some fLk-harmonic isoparametric hypersurfaces, fLk-harmonic weakly convex hypersurfaces, and we show that there exists no compact fLk-harmonic hypersurface either in the Euclidean space or in the hyperbolic space or in the Euclidean hemisphere. As well, some properties and examples of these definitions are given.