DOI QR코드

DOI QR Code

A CLASS OF INVERSE CURVATURE FLOWS IN ℝn+1, II

  • Hu, Jin-Hua (Faculty of Mathematics and Statistics Key Laboratory of Applied Mathematics of Hubei Province Hubei University) ;
  • Mao, Jing (Faculty of Mathematics and Statistics Key Laboratory of Applied Mathematics of Hubei Province Hubei University) ;
  • Tu, Qiang (Faculty of Mathematics and Statistics Key Laboratory of Applied Mathematics of Hubei Province Hubei University) ;
  • Wu, Di (Faculty of Mathematics and Statistics Key Laboratory of Applied Mathematics of Hubei Province Hubei University)
  • Received : 2019.09.16
  • Accepted : 2020.01.09
  • Published : 2020.09.01

Abstract

We consider closed, star-shaped, admissible hypersurfaces in ℝn+1 expanding along the flow Ẋ = |X|α-1 F, α ≤ 1, β > 0, and prove that for the case α ≤ 1, β > 0, α + β ≤ 2, this evolution exists for all the time and the evolving hypersurfaces converge smoothly to a round sphere after rescaling. Besides, for the case α ≤ 1, α + β > 2, if furthermore the initial closed hypersurface is strictly convex, then the strict convexity is preserved during the evolution process and the flow blows up at finite time.

Keywords

References

  1. S. Brendle, P.-K. Hung, and M.-T. Wang, A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold, Comm. Pure Appl. Math. 69 (2016), no. 1, 124-144. https://doi.org/10.1002/cpa.21556
  2. L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, III; Functions of the eigenvalue of the Hessian, Acta. Math. 155 (1985), 261-301. https://doi.org/10.1007/BF02392544
  3. H. Chen, Q. Li, The Lp-dual Minkowski problem and related parabolic flows, Preprint.
  4. L. Chen and J. Mao, Non-parametric inverse curvature flows in the AdS-Schwarzschild manifold, J. Geom. Anal. 28 (2018), no. 2, 921-949. https://doi.org/10.1007/s12220-017-9848-6
  5. L. Chen, J. Mao, Q. Tu, and D. Wu, Asymptotic convergence for a class of inverse mean curvature flows in $R^{n+1}$, Proc. Amer. Math. Soc. 148 (2020), no. 1, 379-392. https://doi.org/10.1090/proc/14686
  6. K. Ecker, Regularity theory for mean curvature flow, Progress in Nonlinear Differential Equations and their Applications, 57, Birkhauser Boston, Inc., Boston, MA, 2004. https://doi.org/10.1007/978-0-8176-8210-1
  7. Y. Ge, G. Wang, and J. Wu, Hyperbolic Alexandrov-Fenchel quermassintegral inequalities II, J. Differential Geom. 98 (2014), no. 2, 237-260. http://projecteuclid.org/euclid.jdg/1406552250
  8. Y. Ge, G. Wang, J. Wu, and C. Xia, A Penrose inequality for graphs over Kottler space, Calc. Var. Partial Differential Equations 52 (2015), no. 3-4, 755-782. https://doi.org/10.1007/s00526-014-0732-y
  9. C. Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Differential Geom. 32 (1990), no. 1, 299-314. http://projecteuclid.org/euclid.jdg/1214445048 https://doi.org/10.4310/jdg/1214445048
  10. C. Gerhardt, Curvature problems, Series in Geometry and Topology, 39, International Press, Somerville, MA, 2006.
  11. C. Gerhardt, Non-scale-invariant inverse curvature flows in Euclidean space, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 471-489. https://doi.org/10.1007/s00526-012-0589-x
  12. G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353-437. http://projecteuclid.org/euclid.jdg/1090349447
  13. G. Huisken and T. Ilmanen, Higher regularity of the inverse mean curvature flow, J. Differential Geom. 80 (2008), no. 3, 433-451. http://projecteuclid.org/euclid.jdg/1226090483
  14. N. V. Krylov, Nonlinear elliptic and parabolic equations of the second order, translated from the Russian by P. L. Buzytsky [P. L. Buzytskii], Mathematics and its Applications (Soviet Series), 7, D. Reidel Publishing Co., Dordrecht, 1987.
  15. H. Li and Y. Wei, On inverse mean curvature flow in Schwarzschild space and Kottler space, Calc. Var. Partial Differential Equations 56 (2017), no. 3, Art. 62, 21 pp. https://doi.org/10.1007/s00526-017-1160-6
  16. H. Li, Y. Wei, and C. Xiong, A geometric inequality on hypersurface in hyperbolic space, Adv. Math. 253 (2014), 152-162. https://doi.org/10.1016/j.aim.2013.12.003
  17. G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. https://doi.org/10.1142/3302
  18. M. Makowski and J. Scheuer, Rigidity results, inverse curvature flows and Alexandrov-Fenchel type inequalities in the sphere, Asian J. Math. 20 (2016), no. 5, 869-892. https://doi.org/10.4310/AJM.2016.v20.n5.a2
  19. O. C. Schnurer, Surfaces expanding by the inverse Gau$\beta$ curvature flow, J. Reine Angew. Math. 600 (2006), 117-134.
  20. J. I. E. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z. 205 (1990), no. 3, 355-372. https://doi.org/10.1007/BF02571249
  21. J. I. E. Urbas, An expansion of convex hypersurfaces, J. Differential Geom. 33 (1991), no. 1, 91-125. http://projecteuclid.org/euclid.jdg/1214446031