References
- S. Brendle, P.-K. Hung, and M.-T. Wang, A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold, Comm. Pure Appl. Math. 69 (2016), no. 1, 124-144. https://doi.org/10.1002/cpa.21556
- L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, III; Functions of the eigenvalue of the Hessian, Acta. Math. 155 (1985), 261-301. https://doi.org/10.1007/BF02392544
- H. Chen, Q. Li, The Lp-dual Minkowski problem and related parabolic flows, Preprint.
- L. Chen and J. Mao, Non-parametric inverse curvature flows in the AdS-Schwarzschild manifold, J. Geom. Anal. 28 (2018), no. 2, 921-949. https://doi.org/10.1007/s12220-017-9848-6
-
L. Chen, J. Mao, Q. Tu, and D. Wu, Asymptotic convergence for a class of inverse mean curvature flows in
$R^{n+1}$ , Proc. Amer. Math. Soc. 148 (2020), no. 1, 379-392. https://doi.org/10.1090/proc/14686 - K. Ecker, Regularity theory for mean curvature flow, Progress in Nonlinear Differential Equations and their Applications, 57, Birkhauser Boston, Inc., Boston, MA, 2004. https://doi.org/10.1007/978-0-8176-8210-1
- Y. Ge, G. Wang, and J. Wu, Hyperbolic Alexandrov-Fenchel quermassintegral inequalities II, J. Differential Geom. 98 (2014), no. 2, 237-260. http://projecteuclid.org/euclid.jdg/1406552250
- Y. Ge, G. Wang, J. Wu, and C. Xia, A Penrose inequality for graphs over Kottler space, Calc. Var. Partial Differential Equations 52 (2015), no. 3-4, 755-782. https://doi.org/10.1007/s00526-014-0732-y
- C. Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Differential Geom. 32 (1990), no. 1, 299-314. http://projecteuclid.org/euclid.jdg/1214445048 https://doi.org/10.4310/jdg/1214445048
- C. Gerhardt, Curvature problems, Series in Geometry and Topology, 39, International Press, Somerville, MA, 2006.
- C. Gerhardt, Non-scale-invariant inverse curvature flows in Euclidean space, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 471-489. https://doi.org/10.1007/s00526-012-0589-x
- G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353-437. http://projecteuclid.org/euclid.jdg/1090349447
- G. Huisken and T. Ilmanen, Higher regularity of the inverse mean curvature flow, J. Differential Geom. 80 (2008), no. 3, 433-451. http://projecteuclid.org/euclid.jdg/1226090483
- N. V. Krylov, Nonlinear elliptic and parabolic equations of the second order, translated from the Russian by P. L. Buzytsky [P. L. Buzytskii], Mathematics and its Applications (Soviet Series), 7, D. Reidel Publishing Co., Dordrecht, 1987.
- H. Li and Y. Wei, On inverse mean curvature flow in Schwarzschild space and Kottler space, Calc. Var. Partial Differential Equations 56 (2017), no. 3, Art. 62, 21 pp. https://doi.org/10.1007/s00526-017-1160-6
- H. Li, Y. Wei, and C. Xiong, A geometric inequality on hypersurface in hyperbolic space, Adv. Math. 253 (2014), 152-162. https://doi.org/10.1016/j.aim.2013.12.003
- G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. https://doi.org/10.1142/3302
- M. Makowski and J. Scheuer, Rigidity results, inverse curvature flows and Alexandrov-Fenchel type inequalities in the sphere, Asian J. Math. 20 (2016), no. 5, 869-892. https://doi.org/10.4310/AJM.2016.v20.n5.a2
-
O. C. Schnurer, Surfaces expanding by the inverse Gau
$\beta$ curvature flow, J. Reine Angew. Math. 600 (2006), 117-134. - J. I. E. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z. 205 (1990), no. 3, 355-372. https://doi.org/10.1007/BF02571249
- J. I. E. Urbas, An expansion of convex hypersurfaces, J. Differential Geom. 33 (1991), no. 1, 91-125. http://projecteuclid.org/euclid.jdg/1214446031