• Title/Summary/Keyword: convex and starlike functions

Search Result 103, Processing Time 0.02 seconds

ON SUPPORT POINTS FOR SOME FAMILIES OF UNIVALENT FUNCTIONS

  • Chung, Gae-Sun
    • Journal of applied mathematics & informatics
    • /
    • v.2 no.2
    • /
    • pp.83-95
    • /
    • 1995
  • Given a closed subset of the family $S^{*}(\alpha)$ of functions starlike of order $\alpha$, a continuous Frechet differentiable functional J, is constructed with this collection as the solution set to the extremal problem ReJ(f) over $S^{*}(\alpha)$. The support points of $S^{*}(\alpha)$ is completely characterized and shown to coincide with the extreme points of its convex hulls. Given any finite collection of support points of $S^{*}(\alpha)$ a continuous linear functional J, is constructed with this collection as the solution set to the extremal problem ReJ(f) over $S^{*}(\alpha)$.

ON CERTAIN CLASSES OF MULTIVALENT FUNCTIONS INVOLVING A GENERALIZED DIFFERENTIAL OPERATOR

  • Selvaraj, Chellian;Selvakumaran, Kuppathai A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.905-915
    • /
    • 2009
  • Making use of a generalized differential operator we introduce some new subclasses of multivalent analytic functions in the open unit disk and investigate their inclusion relationships. Some integral preserving properties of these subclasses are also discussed.

FEKETE-SZEGÖ PROBLEM FOR CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS

  • VASUDEVARAO, ALLU
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1937-1943
    • /
    • 2015
  • For $1{\leq}{\alpha}<2$, let $\mathcal{F}({\alpha})$ denote the class of locally univalent normalized analytic functions $f(z)=z+{\Sigma}_{n=2}^{\infty}{a_nz^n}$ in the unit disk ${\mathbb{D}}=\{z{\in}{\mathbb{C}}:{\left|z\right|}<1\}$ satisfying the condition $Re\(1+{\frac{zf^{{\prime}{\prime}}(z)}{f^{\prime}(z)}}\)>{\frac{{\alpha}}{2}}-1$. In the present paper, we shall obtain the sharp upper bound for Fekete-$Szeg{\ddot{o}}$ functional $|a_3-{\lambda}a_2^2|$ for the complex parameter ${\lambda}$.

BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER BASED ON SUBORDINATE CONDITIONS INVOLVING HURWITZ-LERCH ZETA FUNCTION

  • Murugusundaramoorthy, G.;Janani, T.;Cho, Nak Eun
    • East Asian mathematical journal
    • /
    • v.32 no.1
    • /
    • pp.47-59
    • /
    • 2016
  • The purpose of the present paper is to introduce and investigate two new subclasses of bi-univalent functions of complex order defined in the open unit disk, which are associated with Hurwitz-Lerch zeta function and satisfying subordinate conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients ${\mid}a_2{\mid}$ and ${\mid}a_3{\mid}$ for functions in the new subclasses. Several (known or new) consequences of the results are also pointed out.

UPPER BOUNDS OF SECOND HANKEL DETERMINANT FOR UNIVERSALLY PRESTARLIKE FUNCTIONS

  • Ahuja, Om;Kasthuri, Murugesan;Murugusundaramoorthy, Gangadharan;Vijaya, Kaliappan
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1019-1030
    • /
    • 2018
  • In [12,13] the researchers introduced universally convex, universally starlike and universally prestarlike functions in the slit domain ${\mathbb{C}}{\backslash}[1,{\infty})$. These papers extended the corresponding notions from the unit disc to other discs and half-planes containing the origin. In this paper, we introduce universally prestarlike generalized functions of order ${\alpha}$ with ${\alpha}{\leq}1$ and we obtain upper bounds of the second Hankel determinant ${\mid}a_2a_4-a^2_3{\mid}$ for such functions.

HYPERGEOMETRIC DISTRIBUTION SERIES AND ITS APPLICATION OF CERTAIN CLASS OF ANALYTIC FUNCTIONS BASED ON SPECIAL FUNCTIONS

  • Murugusundaramoorthy, Gangadharan;Porwal, Saurabh
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.671-684
    • /
    • 2021
  • The tenacity of the current paper is to find connections between various subclasses of analytic univalent functions by applying certain convolution operator involving generalized hypergeometric distribution series. To be more specific, we examine such connections with the classes of analytic univalent functions k - 𝓤𝓒𝓥* (𝛽), k - 𝓢*p (𝛽), 𝓡 (𝛽), 𝓡𝜏 (A, B), k - 𝓟𝓤𝓒𝓥* (𝛽) and k - 𝓟𝓢*p (𝛽) in the open unit disc 𝕌.

Integral Operator of Analytic Functions with Positive Real Part

  • Frasin, Basem Aref
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.77-85
    • /
    • 2011
  • In this paper, we introduce the integral operator $I_{\beta}$($p_1$, ${\ldots}$, $p_n$; ${\alpha}_1$, ${\ldots}$, ${\alpha}_n$)(z) analytic functions with positive real part. The radius of convexity of this integral operator when ${\beta}$ = 1 is determined. In particular, we get the radius of starlikeness and convexity of the analytic functions with Re {f(z)/z} > 0 and Re {f'(z)} > 0. Furthermore, we derive sufficient condition for the integral operator $I_{\beta}$($p_1$, ${\ldots}$, $p_n$; ${\alpha}_1$, ${\ldots}$, ${\alpha}_n$)(z) to be analytic and univalent in the open unit disc, which leads to univalency of the operators $\int\limits_0^z(f(t)/t)^{\alpha}$dt and $\int\limits_0^z(f'(t))^{\alpha}dt$.

T-NEIGHBORHOODS IN VARIOUS CLASSES OF ANALYTIC FUNCTIONS

  • Shams, Saeid;Ebadian, Ali;Sayadiazar, Mahta;Sokol, Janusz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.659-666
    • /
    • 2014
  • Let $\mathcal{A}$ be the class of analytic functions f in the open unit disk $\mathbb{U}$={z : ${\mid}z{\mid}$ < 1} with the normalization conditions $f(0)=f^{\prime}(0)-1=0$. If $f(z)=z+\sum_{n=2}^{\infty}a_nz^n$ and ${\delta}$ > 0 are given, then the $T_{\delta}$-neighborhood of the function f is defined as $$TN_{\delta}(f)\{g(z)=z+\sum_{n=2}^{\infty}b_nz^n{\in}\mathcal{A}:\sum_{n=2}^{\infty}T_n{\mid}a_n-b_n{\mid}{\leq}{\delta}\}$$, where $T=\{T_n\}_{n=2}^{\infty}$ is a sequence of positive numbers. In the present paper we investigate some problems concerning $T_{\delta}$-neighborhoods of function in various classes of analytic functions with $T=\{2^{-n}/n^2\}_{n=2}^{\infty}$. We also find bounds for $^{\delta}^*_T(A,B)$ defined by $$^{\delta}^*_T(A,B)=jnf\{{\delta}&gt;0:B{\subset}TN_{\delta}(f)\;for\;all\;f{\in}A\}$$ where A, B are given subsets of $\mathcal{A}$.

NEW SUBCLASS OF MEROMORPHIC MULTIVALENT FUNCTIONS ASSOCIATED WITH HYPERGEOMETRIC FUNCTION

  • Khadr, Mohamed A.;Ali, Ahmed M.;Ghanim, F.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.553-563
    • /
    • 2021
  • As hypergeometric meromorphic multivalent functions of the form $$L^{t,{\rho}}_{{\varpi},{\sigma}}f(\zeta)=\frac{1}{{\zeta}^{\rho}}+{\sum\limits_{{\kappa}=0}^{\infty}}{\frac{(\varpi)_{{\kappa}+2}}{{(\sigma)_{{\kappa}+2}}}}\;{\cdot}\;{\frac{({\rho}-({\kappa}+2{\rho})t)}{{\rho}}}{\alpha}_{\kappa}+_{\rho}{\zeta}^{{\kappa}+{\rho}}$$ contains a new subclass in the punctured unit disk ${\sum_{{\varpi},{\sigma}}^{S,D}}(t,{\kappa},{\rho})$ for -1 ≤ D < S ≤ 1, this paper aims to determine sufficient conditions, distortion properties and radii of starlikeness and convexity for functions in the subclass $L^{t,{\rho}}_{{\varpi},{\sigma}}f(\zeta)$.

ON PARTIAL SOLUTIONS TO CONJECTURES FOR RADIUS PROBLEMS INVOLVING LEMNISCATE OF BERNOULLI

  • Gurpreet Kaur
    • Korean Journal of Mathematics
    • /
    • v.31 no.4
    • /
    • pp.433-444
    • /
    • 2023
  • Given a function f analytic in open disk centred at origin of radius unity and satisfying the condition |f(z)/g(z) - 1| < 1 for a analytic function g with certain prescribed conditions in the unit disk, radii constants R are determined for the values of Rzf'(Rz)/f(Rz) to lie inside the domain enclosed by the curve |w2 - 1| = 1 (lemniscate of Bernoulli). This, in turn, provides a partial solution to the conjectures and problems for determination of sharp bounds R for such functions f.