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ON PARTIAL SOLUTIONS TO CONJECTURES FOR RADIUS

PROBLEMS INVOLVING LEMNISCATE OF BERNOULLI

Gurpreet Kaur

Abstract. Given a function f analytic in open disk centred at origin of radius
unity and satisfying the condition |f(z)/g(z)− 1| < 1 for a analytic function g with
certain prescribed conditions in the unit disk, radii constants R are determined
for the values of Rzf ′(Rz)/f(Rz) to lie inside the domain enclosed by the curve
|w2 − 1| = 1 (lemniscate of Bernoulli). This, in turn, provides a partial solution to
the conjectures and problems for determination of sharp bounds R for such functions
f .

1. Introduction

For α ∈ C and s > 0, let D(α, s) := {z ∈ C : |z − α| < s} denotes the open
disk centred at α and radius s. Let A be the class of analytic functions f with
f(0) = 0 = f ′(0) − 1, which are defined in D := D(0, 1) and let S ⊂ A consists of
univalent functions. For i = 1, 2, 3, 4, 5, consider the following class

Gi =

{
f ∈ A :

∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < 1 for some g ∈ A with Re

(
g(z)

ψi(z)

)
> 0 (z ∈ D)

}
,

where the functions ψi ∈ A are given by z, z + z2/2, z/(1 − z2), z/(1 − z)2 and
z/(1 + z) respectively. For the class G1, Ratti [23, Theorem 4, p. 245] determined
its radius of univalence and starlikeness. Associated with various choices of φ in the
class S∗(φ) := {f ∈ A : zf ′(z)/f(z) ≺ φ(z)} studied in [19], further radii constants
for the class G1 were investigated by Ali et al. [5, Theorem 2.3, p. 30], Gupta et
al. [12, Theorem 6.1, p. 1170], Mendiratta et al. [21, Theorem 3.7, p. 383], Cho et
al. [9, Theorem 4.1, p. 228], Arora and Kumar [6, Theorem 4.10, p. 1007], Kumar and
Ravichandran [16, Theorem 3.5, p. 208], Wani and Swaminathan [35, Theorem 4.1, p.
178], Gandhi and Ravichandran [11, Theorem 3.3], Sharma et al. [28, Theorem 5.3, p.
936] and Gandhi [10, Theorem 3.5, p. 182]. Here the function φ in S∗(φ) corresponds
to a univalent function with φ(0) = 1, φ′(0) > 0, Reφ > 0 in D and the domain
φ(D) is starlike with respect to 1 and symmetric about the line Im z = 0. Kanaga
and Ravichandran [14], Lee et al. [18], Ahmad El-Faqeer et al. [1] and Sebastian and
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Ravichandran [26] investigated the similar radius problems for the classes G2, G3, G4
and G5 respectively.

In the present manuscript, we are concerned with the radius problems for the classes
Gi (i = 1, 2, 3, 4, 5) associated with the subclass

S∗L := S∗(
√

1 + z) =

{
f ∈ A :

∣∣∣∣∣
(
zf ′(z)

f(z)

)2

− 1

∣∣∣∣∣ < 1

}
of starlike functions introduced by Sokó l and Stankiewicz [33] and further investigated
by several authors [2–4, 13, 15, 17, 25, 29–32, 34]. By the S∗L-radius for the subclass
G ⊆ A, denoted by RS∗L(G), we mean

sup{R : r−1f(rz) ∈ S∗L for all r ∈ (0, R] and f ∈ G}.
Although the S∗L-radius has been computed for the classes G1, G3, G4 and G5 in [5,
Theorem 2.2(a), p. 28], [18, Theorem 2(2), p. 4479], [1, Theorem 2(2), p. 523] and [26,
Theorem 2.2(2), p. 91] respectively, the bounds did not turn out to be sharp. Their
technique involved finding the disk D(α, s) such that zf ′(z)/f(z) ∈ D(α, s) for f ∈ Gi
(i = 1, 3, 4, 5) and then applying the result of Ali et al. [4, Lemma 2.2, p. 6559] which
embeds that disk into the domain enclosed by the curve |w2 − 1| = 1 (known as
lemniscate of Bernoulli). But this technique failed to yield the desired sharp radii
bounds. Also, Kanaga and Ravichandran [14, Theorem 3.1, p. 422] did not compute
the S∗L-radius for the class G2. In Section 2, we have employed a new technique
to solve this problem of computing the upper bounds of S∗L-radii for the classes Gi
(i = 1, 2, 3, 4, 5), some of them turns out to be the conjectured radii constants for
these classes. Moreover, explicit functions in these classes are provided to show that
these upper bounds are actually attained.

In the last section, the upper bounds for S∗L-radii have been computed for the
following subclasses of A:

H =

{
f ∈ A :

∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < 1 for some g ∈ K
}

and

Jα =

{
f ∈ A :

∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < 1 for some g ∈ A with Re

(
g(z)

ζ(z)

)
> 0, ζ ∈ S∗(α)

}
.

Here, K and S∗(α) are subclasses of S consisting of convex functions and starlike
functions of order α (0 ≤ α < 1) respectively. The class Jα was introduced by Causey
and Merkes [7]. It is important to point out that S∗L-radius for the class H evaluated
by Ali et al. [5, Theorem 2.5, p. 32] was not sharp. Moreover, the radius RS∗L(Jα)
was not calculated in [20] (although the other S∗(φ)-radii are computed there).

We shall employ the following lemmas concerning the class P(γ) =: {p : D → C :
p(0) = 1 and Re p(z) > γ for all z ∈ D}, where γ ∈ [0, 1).

Lemma 1.1. [8, Lemma 4, p. 182] If q ∈ P(1/2), then

Re

(
zq′(z)

q(z)

)
≥ − |z|

1 + |z|
for |z| ≤ 1

3
.

Lemma 1.2. [27, Lemma 2, p. 239] If q ∈ P(γ), 0 ≤ γ < 1, then

Re

(
zq′(z)

q(z)

)
≤
∣∣∣∣zq′(z)

q(z)

∣∣∣∣ ≤ 2r(1− γ)

(1− r)(1 + (1− 2γ)r)
, |z| = r.
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Lemma 1.3. [24, Lemma 2.1, p. 267] If q ∈ P(γ), 0 ≤ γ < 1, then∣∣∣∣q(z)− 1 + (1− 2γ)r2

1− r2

∣∣∣∣ ≤ 2(1− γ)r

1− r2
, |z| = r.

2. S∗L-radius for classes Gi

In this section, we will compute the upper bounds for the S∗L-radius for classes
Gi, i = 1, 2, 3, 4, 5. In fact, the radius constant in part (a) of the following theorem
coincides with the result [5, Conjecture 2.2, p. 32] for the class G1.

Theorem 2.1. The upper bounds of S∗L-radius for the classes Gi, i = 1, 2, 3, 4, 5
are:

S.No. Class ψi RS∗L(Gi) ≤ ri

(a) G1 z r1 =
3

2
+

3

2
√

2
− 1

2

√
27

2
+ 7
√

2 ≈ 0.142009

(b) G2 z +
z2

2
r2 ≈ 0.12209

(c) G3
z

1− z2
r3 =

√
17− 4

√
2− 3

2
√

2
≈ 0.130093

(d) G4
z

(1− z)2
r4 =

√
33− 4

√
2− 5

2
√

2
≈ 0.0809876

(e) G5
z

1 + z
r5 = (

√
7− 2

√
2− 2)(

√
2 + 1) ≈ 0.102466

Here, r2 is the smallest root in (0, 1) satisfying (3−
√

2)r3−(2
√

2−1)r2−(8−
√

2)r+
2(
√

2− 1) = 0. Moreover, there exist functions fi ∈ Gi such that fi(riz)/ri ∈ S∗L and∣∣∣∣∣
(
zf ′i(z)

fi(z)

)2

− 1

∣∣∣∣∣ =
√

2

for some zi = rie
iθ, θ ∈ [0, 2π) for each i = 1, 2, 3, 4, 5.

Proof. If f belongs to any of the Gi’s, then q(z) = g(z)/f(z) ∈ P(1/2) for some g ∈
A. The central idea behind the proof lies on the observation that Re(zf ′(z)/f(z)) <√

2 is a necessary condition for zf ′(z)/f(z) to lie inside ΩL. Also, all the computed
radii ri < 1/3 for i = 1, 2, 3, 4, 5.

(a) Let f ∈ G1. In this case, the function p1(z) = g(z)/z is a member of P and

(1)
zf ′(z)

f(z)
= 1 +

zp′1(z)

p1(z)
− zq′(z)

q(z)
.
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By using Lemmas 1.1 and 1.2 in (1), we have

Re

(
zf ′(z)

f(z)

)
= 1 + Re

(
zp′1(z)

p1(z)

)
− Re

(
zq′1(z)

q1(z)

)
≤ 1 +

2r

1− r2
+

r

1 + r
for |z| = r ≤ 1

3

=
1 + 3r − 2r2

1− r2
<
√

2

provided r < r1 := (3 −
√

25− 12
√

2)/(2(2 −
√

2)). Thus RS∗L(G1) ≤ r1. The radius
r1 is attained for the function

f1(z) =
z(1 + z)2

1− z
with g1(z) =

z(1 + z)

1− z
.

Clearly, f1 ∈ G1. In order to show that w = zf ′1(z)/f1(z) ∈ ΩL for |z| < r1, let us
compute the expression for |w2 − 1|. For z = reit and u = cos t, a long and tedious
calculation gives∣∣∣∣∣

(
zf ′1(z)

f1(z)

)2

− 1

∣∣∣∣∣
2

=

∣∣∣∣∣
(

1 + 3z − 2z2

1− z2

)2

− 1

∣∣∣∣∣
2

=
a1(r, u)

b1(r, u)
,

where

a1(r, u) = r2(9 + r2 − 6ru)(4 + 21r2 + 9r4 + 12ru− 18r3u− 24r2u2)

and
b1(r, u) = (1 + r2 − 2ru)2(1 + r2 + 2ru)2.

Consequently, it is enough to show that the function h1(r, u) = b1(r, u) − a1(r, u) is
positive for r < r1. Observe that the roots of h1(r, u) = 0 in (0, 1) are decreasing as
a function of u ∈ [−1, 1]. Consequently, it follows that h1(r, u) > 0 for −1 ≤ u ≤ 1 if
and only if

h1(r, 1) = (1− 3r − 2r2)2(1− 6r − 9r2 + 12r3 − 2r4) > 0,

which gives r < r1 (see Figure 1). Thus f1(r1z)/r1 ∈ S∗L.

0.2 0.4 0.6 0.8 1.0

-15

-10

-5

Figure 1. h1(r, 1) for r ∈ (0, 1)

(b) Let f ∈ G2. Then p2(z) = g(z)/(z+ z2/2) ∈ P and f(z) = p2(z)(z+ z2/2)/q(z)
which yields

zf ′(z)

f(z)
=
zp′2(z)

p2(z)
− zq′(z)

q(z)
+

2(1 + z)

2 + z
.(2)
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Using Lemmas 1.1 and 1.2, (2) gives

Re

(
zf ′(z)

f(z)

)
= Re

(
zp′2(z)

p2(z)

)
− Re

(
zq′(z)

q(z)

)
+ Re

(
2(1 + z)

2 + z

)
≤ 2r

1− r2
+

r

1 + r
+

2(1 + r)

2 + r
for |z| = r ≤ 1

3

=
2 + 8r − r2 − 3r3

(1− r2)(2 + r)
<
√

2,

if r < r2 where r2 ≈ 0.12209 is defined in the statement of the theorem. In order to
show that this upper bound is achieved, consider the function

f2(z) =
(z + z2/2)(1 + z)2

1− z
with g2(z) =

(z + z2/2)(1 + z)

1− z
.

Then f2 ∈ G2. Now we will make use of the similar technique as carried out in part
(a) to establish that zf ′2(z)/f2(z) ∈ ΩL for |z| < r2. Observe that∣∣∣∣∣

(
zf ′2(z)

f2(z)

)2

− 1

∣∣∣∣∣
2

=

∣∣∣∣∣
(

2 + 8z − z2 − 3z3

(1− z2)(2 + z)

)2

− 1

∣∣∣∣∣
2

=
a2(r, u)

b2(r, u)
,

where

a2(r, u) = r2(49 + 29r2 + 4r4 + 14ru− 4r3u− 56r2u2)(16 + 105r2 + 81r4

+ 16r6 + 72ru+ 42r3u+ 24r5u− 48r2u2 − 144r4u2 − 128r3u3)

and
b2(r, u) = (1 + r2 − 2ru)2(1 + r2 + 2ru)2(4 + r2 + 4ru)2

for z = reit and u = cos t. We now show that the function h2(r, u) = b2(r, u)−a2(r, u)
is positive for r < r2. It can be seen that the roots of h2(r, u) = 0 in (0, 1) are
decreasing as a function of u ∈ [−1, 1]. Therefore, h2(r, u) > 0 for u ∈ [−1, 1] if and
only if

h2(r, 1) = (2 + 8r − r2 − 3r3)2(4− 24r − 74r2 + 12r3 + 51r4 + 2r5 − 7r6) > 0.

This gives r < r2 (as illustrated in Figure 2). Hence f2(r2z)/r2 ∈ S∗L.

0.2 0.4 0.6 0.8 1.0

-30

-20

-10

Figure 2. Graph of h2(r, 1) for r ∈ (0, 0.2)

(c) If f ∈ G3 and p3(z) = g(z)(1− z2)/z, then p3 ∈ P and f(z) = zp3(z)/(q(z)(1−
z2)) which yields

zf ′(z)

f(z)
=
zp′3(z)

p3(z)
− zq′(z)

q(z)
+

1 + z2

1− z2
.(3)
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Equation (3) together with Lemmas 1.1 and 1.2 simplifies to

Re

(
zf ′(z)

f(z)

)
= Re

(
zp′3(z)

p3(z)

)
− Re

(
zq′(z)

q(z)

)
+ Re

(
1 + z2

1− z2

)
≤ 2r

1− r2
+

r

1 + r
+

1 + r2

1− r2
for |z| = r ≤ 1

3

=
1 + 3r

1− r2
.

If the above expression is less than
√

2, then it is easy to deduce that RS∗L(G3) ≤ r3

where r3 := (
√

17− 4
√

2− 3)/(2
√

2). If we consider the function

f3(z) =
z(1 + z)

(1− z)2
with g3(z) =

z

(1− z)2
,

then f3 ∈ G3 and for z = reit and u = cos t, we have∣∣∣∣∣
(
zf ′3(z)

f3(z)

)2

− 1

∣∣∣∣∣
2

=

∣∣∣∣∣
(

1 + 3z

1− z2

)2

− 1

∣∣∣∣∣
2

=
a3(r, u)

b3(r, u)
,

where a3(r, u) = r2(9+r2+6ru)(4+13r2+r4+12ru−6r3u−8r2u2) and b3(r, u) = (1+
r2−2ru)2(1+r2+2ru)2. Since the roots of the equation h3(r, u) = b3(r, u)−a3(r, u) = 0
in (0, 1) are decreasing as a function of u ∈ [−1, 1], therefore h3(r, u) > 0 for u ∈ [−1, 1]
if and only if

h3(r, 1) = (1 + 3r)2(1− 6r − 13r2 + 2r4) > 0

which is possible if r < r3 (Figure 3). Hence zf ′3(z)/f3(z) ∈ ΩL for |z| < r3.

0.05 0.10 0.15 0.20

-1.5

-1.0

-0.5

0.5

1.0

Figure 3. Graph of h3(r, 1) for r ∈ (0, 0.2)

(d) Let f ∈ G4. Then p4(z) = g(z)(1−z)2/z ∈ P and f(z) = zp4(z)/(q(z)(1−z)2).
A straightforward calculation leads to

zf ′(z)

f(z)
=
zp′4(z)

p4(z)
− zq′(z)

q(z)
+

1 + z

1− z
.(4)
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In this case as well, the use of Lemmas 1.1 and 1.2 in (4) gives

Re

(
zf ′(z)

f(z)

)
= Re

(
zp′4(z)

p4(z)

)
− Re

(
zq′(z)

q(z)

)
+ Re

(
1 + z

1− z

)
≤ 2r

1− r2
+

r

1 + r
+

1 + r

1− r
for |z| = r ≤ 1

3

=
1 + 5r

1− r2
<
√

2,

provided r < r4 := (
√

33− 4
√

2 − 5)/(2
√

2). This infers that RS∗L(G4) ≤ r4. The
attainability of the bound r4 can be seen by considering the function

f4(z) =
z(1 + z)2

(1− z)3
with g4(z) =

z(1 + z)

(1− z)3
.

Clearly f4 ∈ G4. We now show that zf ′4(z)/f4(z) ∈ ΩL for |z| < r4. A lengthy
calculation gives ∣∣∣∣∣

(
zf ′4(z)

f4(z)

)2

− 1

∣∣∣∣∣
2

=

∣∣∣∣∣
(

1 + 5z

1− z2

)2

− 1

∣∣∣∣∣
2

=
a4(r, u)

b4(r, u)
,

where a4(r, u) = r2(25+r2+10ru)(4+29r2+r4+20ru−10r3u−8r2u2) and b4(r, u) =
(1 + r2 − 2ru)2(1 + r2 + 2ru)2 for z = reit and u = cos t. Using the similar analysis
executed in previous parts, h4(r, u) = b4(r, u)− a4(r, u) > 0 for u ∈ [−1, 1] if and only
if

h4(r, 1) = (1 + 5r)2(1− 10r − 29r2 + 2r4) > 0

which leads to r < r4 (illustrated in Figure 4). Hence f4(r4z)/r4 ∈ S∗L.

0.05 0.10 0.15 0.20

-8

-6

-4

-2

Figure 4. Graph of h4(r, 1) for r ∈ (0.0.2)

(e) If f ∈ G5, then

zf ′(z)

f(z)
=
zp′5(z)

p5(z)
− zq′(z)

q(z)
+

1

1 + z
(5)
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where p5(z) = g(z)(1 + z)/z ∈ P . By using Lemmas 1.1 and 1.2 in (5), we obtain

Re

(
zf ′(z)

f(z)

)
= Re

(
zp′5(z)

p5(z)

)
− Re

(
zq′(z)

q(z)

)
+ Re

(
1

1 + z

)
≤ 2r

1− r2
+

r

1 + r
+

1

1− r
for |z| = r ≤ 1

3

=
1 + 4r − r2

1− r2
<
√

2,

if r < r5 := (
√

7− 2
√

2− 2)(
√

2 + 1).

0.05 0.10 0.15 0.20

-3

-2

-1

1

Figure 5. Graph of h5(r,−1) for r ∈ (0, 0.2)

The function

f5(z) =
z(1− z)2

(1 + z)2
with g5(z) =

z(1− z)

(1 + z)2

is in the class G5. For z = reit and u = cos t, if we set a5(r, u) = 64r2(1 + 6r2 + r4 −
4ru+ 4r3u− 4r2u2) and b5(r, u) = (1 + r2 − 2ru)2(1 + r2 + 2ru)2, then∣∣∣∣∣

(
zf ′5(z)

f5(z)

)2

− 1

∣∣∣∣∣
2

=

∣∣∣∣∣
(

1− 4z − z2

1− z2

)2

− 1

∣∣∣∣∣
2

=
a5(r, u)

b5(r, u)
.

We now show that the function h5(r, u) = b5(r, u) − a5(r, u) is positive for r < r5.
Observe that the roots of h5(r, u) = 0 in (0, 1) are increasing as a function of u ∈
[−1, 1]. Therefore, h5(r, u) > 0 for u ∈ [−1, 1] if and only if

h5(r,−1) = (1 + 4r − r2)2(1− 8r − 18r2 + 8r3 + r4) > 0.

This gives r < r5 (Figure 5) and hence f5(r5z)/r5 ∈ S∗L.

3. S∗L-radius for classes H and Jα

The first theorem of this section calculates the upper bound of S∗L-radius for the
class H which in turn matches with the result [5, Conjecture 2.3, p. 34].

Theorem 3.1. The upper bound for the radius RS∗L(H) is

RS∗L(H) ≤ −1−
√

2 +

√
2(2 +

√
2) ≈ 0.198912.
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Proof. Let f ∈ H with associated convex function g. By [22, Section 2.6, p. 56],
zg′/g ∈ P(1/2). Also, q = g/f is a member of P(1/2) and

zf ′(z)

f(z)
=
zg′(z)

g(z)
− zq′(z)

q(z)
.(6)

By Lemmas 1.1 and 1.3, (6) yields

Re

(
zf ′(z)

f(z)

)
= Re

(
zg′(z)

g(z)

)
− Re

(
zq′(z)

q(z)

)
≤ 1

1− r
+

r

1 + r
for |z| = r ≤ 1

3

=
1 + 2r − r2

1− r2
<
√

2,

which simplifies to r < rH := −1−
√

2 +
√

2(2 +
√

2). This infers that RS∗L(H) ≤ rH.

0.2 0.4 0.6 0.8 1.0

-15

-10

-5

Figure 6. Graph of k1(r, 1) for r ∈ (0, 1)

The bound rH is attained, as seen by the function

f0(z) =
z(1 + z)

1− z
∈ H with g0(z) =

z

1− z
.

If we write z = reit and u = cos t, then∣∣∣∣∣
(
zf ′0(z)

f0(z)

)2

− 1

∣∣∣∣∣
2

=

∣∣∣∣∣
(

1 + 2z − z2

1− z2

)2

− 1

∣∣∣∣∣
2

=
c1(r, u)

d1(r, u)
.

The roots of the equation k1(r, u) = d1(r, u)− c1(r, u) = 0 in (0, 1) are decreasing as
a function of u ∈ [−1, 1], where c1(r, u) = 16r2(r4− 2r3u+ r2(3− 4u2) + 2ru+ 1) and
d1(r, u) = (1 + r2− 2ru)2(1 + r2 + 2ru)2. Hence k1(r, u) > 0 for u ∈ [−1, 1] if and only
if

k1(r, 1) = (1 + 2r − r2)2(1− 4r − 6r2 + 4r3 + r4) > 0

which gives r < rH (Figure 6). Therefore, f0(rHz)/rH ∈ S∗L.

The last result determines the upper bound of the radius RS∗L(Jα), α ∈ [0, 1).

Theorem 3.2. For 0 ≤ α < 1, we have

RS∗L(Jα) ≤ 2(
√

2− 1)

5− 2α +
√

33− 4
√

2− 12α− 8
√

2α + 4α2
.
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Proof. Let f ∈ Jα. Then j1 = g/f ∈ P(1/2) and j2 = g/ζ ∈ P satisfy f(z) =
ζ(z)j2(z)/j1(z). Note that

zf ′(z)

f(z)
=
zj′2(z)

j2(z)
− zj′1(z)

j1(z)
+
zζ ′(z)

ζ(z)
.(7)

In accordance with Lemmas 1.1, 1.2 and 1.3 in (7), we obtain

Re

(
zf ′(z)

f(z)

)
= Re

(
zj′2(z)

j2(z)

)
− Re

(
zj′1(z)

j1(z)

)
+ Re

(
zζ ′(z)

ζ(z)

)
≤ 2r

1− r2
+

r

1 + r
+

1 + r − 2αr

1− r
for |z| = r ≤ 1

3

=
1 + (5− 2α)r − 2αr2

1− r2
<
√

2,

which yields r < rα := 2(
√

2− 1)/(5− 2α +
√

33− 4
√

2− 12α− 8
√

2α + 4α2).

0.05 0.10 0.15 0.20

-8

-6

-4

-2

(a) α = 0

0.05 0.10 0.15 0.20

-3

-2

-1

1

(b) α = 1/2

0.05 0.10 0.15 0.20

-2.0

-1.5

-1.0

-0.5

0.5

1.0

(c) α = 3/4

Figure 7. Graph of k2(r, 1, α) for r ∈ (0, 0.2)

Consider the functions

fα(z) =
z(1 + z)2

(1− z)3−2α
, gα(z) =

z(1 + z)

(1− z)3−2α
and ζα(z) =

z

(1− z)2−2α
.

Then fα ∈ Jα. If z = reit and u = cos t, then∣∣∣∣∣
(
zf ′α(z)

fα(z)

)2

− 1

∣∣∣∣∣
2

=

∣∣∣∣∣
(

1− (2α− 5)z − 2αz2

1− z2

)2

− 1

∣∣∣∣∣
2

=
c2(r, u, α)

d2(r, u, α)
.

We now show that the function k2(r, u, α) = d2(r, u, α) − c2(r, u, α) is positive for
r < rα where c2(r, u, α) = r2(25 − 20α + 4α2 + r2 − 4αr2 + 4α2r2 + 10ru − 24αru +



Radius problems involving lemniscate of Bernoulli 443

8α2ru)(4+29r2−12αr2 +4α2r2 +r4 +4αr4 +4α2r4 +20ru−8αru−10r3u−16αr3u+
8α2r3u − 8r2u2 − 16αr2u2) and d2(r, u, α) = (1 + r2 − 2ru)2(1 + r2 + 2ru)2. For
each 0 ≤ α < 1, the roots of k2(r, u, α) = 0 in (0, 1) are decreasing as a function
of u ∈ [−1, 1]. Therefore, k2(r, u, α) > 0 for u ∈ [−1, 1] if and only if k2(r, 1, α) =
(1+(5−2α)r−2αr2)2(1−(10−4α)r−(29−24α+4α2)r2+4α(5−2α)r3+(2−4α2)r4) > 0
which holds for r < rα (Figure 7 depicts the graph of k2(r, 1, α) for specific values of
α). This proves that fα(rαz)/rα ∈ S∗L.
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