• 제목/요약/키워드: converter control

검색결과 3,153건 처리시간 0.028초

A Controllable LCL-T Resonant AC/DC Converter for High Frequency Power Distribution Systems

  • Zeng, Jun;Li, Xuesheng;Liu, Junfeng
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.876-885
    • /
    • 2015
  • High frequency alternating current (HFAC) has been widely used in a wide range of power distribution systems (PDS) due to its superior performance. A high frequency AC/DC converter plays the role of converting HFAC voltage to DC voltage. In this paper, a new LCL-T resonant AC/DC converter has been proposed, and an easier control method based on input voltage comparison is presented, without the complicated calculation of the zero-crossing point. Both a low distortion and near-to-unity power factor can be achieved by the proposed resonant converter and control strategy. The operational principle and steady-state analysis are given for the proposed resonant converter. A simulation model and experimental prototype are implemented with an operation frequency of 25kHz and a rated power of 20W. The simulation and experimental results verify the accuracy of the analysis and the excellent performance of the proposed topology.

로스레스 스너버 커패시터를 이용한 새로운 스텝 업-다운 컨버터에 관한 연구 (A Study on Novel Step Up-Down Converter using Loss-Less Snubber Capacitor)

  • 곽동걸;이봉섭;김춘삼;심재선;정원석;손재현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.15-16
    • /
    • 2012
  • This paper is study on a novel high efficiency step up-down converter using loss-less snubber capacitor. The proposed converter is accomplished that the turn-on operation of switches is on zero current switching (ZCS) by DCM. The converter is also applicable to a new quasi-resonant circuit to achieve high efficiency converter. The control switches using in the converter are operated with soft switching, that is, ZVS and ZCS by quasi-resonant method. The control switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the efficiency of the converter is high.

  • PDF

넓은 입·출력 전압이득 특성을 갖는 3 브리지 LLC 공진컨버터 (A 3-Bridge LLC Resonant Converter with Wide Input/Output Voltage Gain Characteristics)

  • 유상재;장기찬;김은수;전용석;국윤상
    • 전력전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.142-151
    • /
    • 2020
  • This paper presents a DC/DC LLC resonant converter with wide input/output voltage gain characteristics and its control method for efficiency improvement. For a wide input/output voltage gain characteristics without designing small transformer magnetization inductance, the proposed converter changes the topology into three modes of operation according to the main switch switching pattern. In each operating mode, variable LINK voltage modulation and frequency modulation were performed to control output voltage and improve operating efficiency. A prototype of a 5-kW DC/DC LLC resonant converter was built and tested to verify the validity and applicability of the proposed converter.

전류불연속 모드 절연형 벅-부스트 컨버터에 관한 연구 (A Study on Isolated Buck-Boost Converter by Discontinuous Conduction Mode)

  • 곽동걸;이봉섭;김춘삼;심재선;박영직
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 추계학술대회
    • /
    • pp.173-174
    • /
    • 2010
  • In this paper, authors propose a new buck-boost converter of discontinuous conduction mode (DCM) added electric isolation. The proposed converter with DCM eliminates the complicated circuit control requirement and reduces the size of components. The general converters of high efficiency are made that the power loss of the used switching devices is minimized. To achieve the soft switching operation of the used control switches, the proposed converter uses a lossless snubber capacitor. The proposed converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of converter is high. The soft switching operation of the proposed converter is verified by digital simulation and experimental results.

  • PDF

PFC Bridge Converter for Voltage-controlled Adjustable-speed PMBLDCM Drive

  • Singh, Sanjeev;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.215-225
    • /
    • 2011
  • In this paper, a buck DC-DC bridge converter is used as a power factor correction (PFC) converter for feeding a voltage source inverter (VSI) based permanent magnet brushless DC motor (PMBLDCM) drive. The front end of the PFC converter is a diode bridge rectifier (DBR) fed from single phase AC mains. The PMBLDCM is used to drive the compressor of an air conditioner through a three-phase voltage source inverter (VSI) fed from a variable voltage DC link. The speed of the air conditioner is controlled to conserve energy using a new concept of voltage control at a DC link proportional to the desired speed of the PMBLDC motor. Therefore, VSI operates only as an electronic commutator of the PMBLDCM. The current of the PMBLDCM is controlled by setting the reference voltage at the DC link as a ramp. The proposed PMBLDCM drive with voltage control-based PFC converter was designed and modeled. The performance is simulated in Matlab-Simulink environment for an air conditioner compressor load driven through a 3.75 kW, 1500 rpm PMBLDC motor. To validate the effectiveness of the proposed speed control scheme, the evaluation results demonstrate improved efficiency of the complete drive with the PFC feature in a wide range of speed and input AC voltage.

넓은 입·출력전압 범위에서 제어 가능한 보조스위치 적용 LLC 공진컨버터 (LLC Resonant Converter with Auxiliary Switches Operating Over A Wide Output Voltage Range)

  • 이지철;김민지;오재성;김은수;국윤상
    • 전력전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.256-264
    • /
    • 2018
  • This paper proposes a three-bridge LLC resonant converter with auxiliary switches for a wide output voltage control range. This converter can be controlled in two ways to achieve a wide controllable output voltage control range of $V_o$ to $3V_o$. The first control mechanism is achieved through the pulse width modulation (PM) of the auxiliary switches and primary switching devices, while the second control mechanism is achieved through the frequency modulation (FM) of the primary switching devices that are configured to operate in the full-bridge switching mode when the auxiliary switches are turned off. The feasibility of using the proposed converter is verified by the results of an experiment with a 2kW prototype.

Cell Balancing Method in Flyback Converter without Cell Selection Switch of Multi-Winding Transformer

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.367-376
    • /
    • 2016
  • This paper presents a cell balancing method for a single switch flyback converter with a multi-winding transformer. The conventional method using a flyback converter with a multi-winding transformer is simple and easy to control, but the voltage of each secondary winding coil might be non-uniform because of the unequal effective turn-ratio. In particular, it is difficult to control the non-uniform effect using turn-ratios because secondary coil has a limited number of turns. The non-uniform secondary voltages disturb the cell balancing procedure and induce an unbalance in cell voltages. Individual cell control by adding a switch for each cell can reduce the undesirable effect. However, the circuit becomes bulky, resulting in additional loss. The proposed method here uses the conventional flyback converter with an adjustment made to the output filters of the cells, instead of the additional switch. The magnitude of voltage applied to a particular cell can be reduced or increased according to the adjusted filter and the selected switching frequency. An analysis of the conventional converter configuration and the filter design method reveals the possibility of adequate cell balancing control without any additional switch on the secondary side.

대용랑 ZVS Full Bridge DC/DC 컨버터에 있어서 Digital-To-Phase Shift PWM 발생회로 (Digital-To-Phase-Shift PWM Circuit for High Power ZVS Full Bridge DC/DC Converter)

  • 김은수;김태진;변영복;박순구;김윤호;이재학
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권1호
    • /
    • pp.54-61
    • /
    • 2000
  • Conventionally, ZVS FB DC/DC converter was controlled by monolithic IC UC3879, which includes the functions of oscillator, error amplifier and phase-shift circuit. Also, microprocessor and DSP have been widely used for the remote control and for the immediate waveform control in ZVS FB DC/DC converter. However the conventional microprocessor controller is complex and difficult to control because the controller consists of analog and digital parts. In the case of the control of FB DC/DC converter, the output is required of driving a direct signal to the switch drive circuits by the digital controller. So, this paper presents the method and realization of designing the digital-to-phase shift PWM circuit controlled by DSP (TMX320C32) in a 2,500A, 40㎾ ZVS FB DC/DC converter.

  • PDF

Analysis and Design of Sliding Mode Control for a Single-Phase AC-DC Converter

  • Sawaengsinkasikit, Winyu;Tipsuwanporn, Vittaya;Tarasantisuk, Chanlit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2291-2294
    • /
    • 2003
  • In this paper, analysis and control design of ac-dc converter, normally nonlinear time-varying system, using sliding mode controller to achieve fast output voltage response, disturbance rejection and robust system in the presence of load variation are demonstrated. The objective of this method is to develop methodology for output voltage to be constant and input current sinusoidal that results in nearly unity power factor, respectively. In addition the converter can be also bidirectional power flow. Simulation results using Matlab/Simulink show the effectiveness of sliding mode control system compared with linear feedback controller to guarantee enhanced PF>0.98, THD<5%, and ripple output voltage is less than 1% at the maximum output power.

  • PDF

Model-based Optimal Control Algorithm for the Clamp Switch of Zero-Voltage Switching DC-DC Converter

  • Ahn, Minho;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.323-333
    • /
    • 2017
  • This paper proposes a model-based optimal control algorithm for the clamp switch of a zero-voltage switching (ZVS) bidirectional DC-DC converter. The bidirectional DC-DC converter (BDC) can accomplish the ZVS operation using the clamp switch. The minimum current for the ZVS operation is maintained, and the inductor current is separated from the input and output voltages by the clamp switch in this topology. The clamp switch can decrease the inductor current ripple, switching loss, and conduction loss of the system. Therefore, the optimal control of the clamp switch is significant to improve the efficiency of the system. This paper proposes a model-based optimal control algorithm using phase shift in a micro-controller unit. The proposed control algorithm is demonstrated by the results of PSIM simulations and an experiment conducted in a 1-kW ZVS BDC system.