• Title/Summary/Keyword: convergence theorems

Search Result 232, Processing Time 0.029 seconds

Convergence of an Iterative Algorithm for Systems of Variational Inequalities and Nonlinear Mappings in Banach Spaces

  • JEONG, JAE UG
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.933-951
    • /
    • 2015
  • In this paper, we consider the problem of convergence of an iterative algorithm for a general system of variational inequalities, a nonexpansive mapping and an ${\eta}$-strictly pseudo-contractive mapping. Strong convergence theorems are established in the framework of real Banach spaces.

ON CONVERGENCE THEOREMS FOR HENSTOCK INTEGRALS

  • Rim, Dong Il;Kim, Won Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.43-51
    • /
    • 2002
  • In this paper we prove a controlled convergence theorem for the Henstock integral by using the new conditions.

  • PDF

A Note on Convergence of Expected Value of Fuzzy Variables

  • Hwang, Chang-Ha;Hong, Dug-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.495-498
    • /
    • 2004
  • In this note, we consider several types of convergence theorems for the expected value of fuzzy variables defined by Liu and Liu [IEEE Trans. Fuzzy Systems, 10(2002), 445-450].

  • PDF

STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR FINDING COMMON ZEROS OF A FINITE FAMILY OF ACCRETIVE OPERATORS

  • Jung, Jong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.381-393
    • /
    • 2009
  • Strong convergence theorems on viscosity approximation methods for finding a common zero of a finite family accretive operators are established in a reflexive and strictly Banach space having a uniformly G$\hat{a}$teaux differentiable norm. The main theorems supplement the recent corresponding results of Wong et al. [29] and Zegeye and Shahzad [32] to the viscosity method together with different control conditions. Our results also improve the corresponding results of [9, 16, 18, 19, 25] for finite nonexpansive mappings to the case of finite pseudocontractive mappings.

FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE IN CAT(0) SPACES

  • Abbas, Mujahid;Thakur, Balwant Singh;Thakur, Dipti
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.107-121
    • /
    • 2013
  • The purpose of this paper is to investigate the demiclosed principle, the existence theorems and convergence theorems in CAT(0) spaces for a class of mappings which is essentially wider than that of asymptotically nonexpansive mappings. The structure of fixed point set of such mappings is also studied. Our results generalize, unify and extend several comparable results in the existing literature.

Weak and Strong Convergence of Hybrid Subgradient Method for Pseudomonotone Equilibrium Problems and Nonspreading-Type Mappings in Hilbert Spaces

  • Sriprad, Wanna;Srisawat, Somnuk
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.83-99
    • /
    • 2019
  • In this paper, we introduce a hybrid subgradient method for finding an element common to both the solution set of a class of pseudomonotone equilibrium problems, and the set of fixed points of a finite family of ${\kappa}$-strictly presudononspreading mappings in a real Hilbert space. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. These convergence theorems are investigated without the Lipschitz condition for bifunctions. Our results complement many known recent results in the literature.

HALPERN TSENG'S EXTRAGRADIENT METHODS FOR SOLVING VARIATIONAL INEQUALITIES INVOLVING SEMISTRICTLY QUASIMONOTONE OPERATOR

  • Wairojjana, Nopparat;Pakkaranang, Nuttapol
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.121-140
    • /
    • 2022
  • In this paper, we study the strong convergence of new methods for solving classical variational inequalities problems involving semistrictly quasimonotone and Lipschitz-continuous operators in a real Hilbert space. Three proposed methods are based on Tseng's extragradient method and use a simple self-adaptive step size rule that is independent of the Lipschitz constant. The step size rule is built around two techniques: the monotone and the non-monotone step size rule. We establish strong convergence theorems for the proposed methods that do not require any additional projections or knowledge of an involved operator's Lipschitz constant. Finally, we present some numerical experiments that demonstrate the efficiency and advantages of the proposed methods.

ON THE WEAK LIMIT THEOREMS FOR GEOMETRIC SUMMATIONS OF INDEPENDENT RANDOM VARIABLES TOGETHER WITH CONVERGENCE RATES TO ASYMMETRIC LAPLACE DISTRIBUTIONS

  • Hung, Tran Loc
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1419-1443
    • /
    • 2021
  • The asymmetric Laplace distribution arises as a limiting distribution of geometric summations of independent and identically distributed random variables with finite second moments. The main purpose of this paper is to study the weak limit theorems for geometric summations of independent (not necessarily identically distributed) random variables together with convergence rates to asymmetric Laplace distributions. Using Trotter-operator method, the orders of approximations of the distributions of geometric summations by the asymmetric Laplace distributions are established in term of the "large-𝒪" and "small-o" approximation estimates. The obtained results are extensions of some known ones.

CONVERGENCE THEOREMS FOR GENERALIZED α-NONEXPANSIVE MAPPINGS IN UNIFORMLY HYPERBOLIC SPACES

  • J. K. Kim;Samir Dashputre;Padmavati;Rashmi Verma
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • In this paper, we establish strong and ∆-convergence theorems for new iteration process namely S-R iteration process for a generalized α-nonexpansive mappings in a uniformly convex hyperbolic space and also we show that our iteration process is faster than other iteration processes appear in the current literature's. Our results extend the corresponding results of Ullah et al. [5], Imdad et al. [16] in the setting of uniformly convex hyperbolic spaces and many more in this direction.

CERTAIN ASPECTS OF ${\mathcal{I}}$-LACUNARY ARITHMETIC STATISTICAL CONVERGENCE

  • MEHMET GURDAL
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.3_4
    • /
    • pp.265-279
    • /
    • 2023
  • In this paper, we firstly presented the definitions of arithmetic ${\mathcal{I}}$-statistically convergence, ${\mathcal{I}}$-lacunary arithmetic statistically convergence, strongly ${\mathcal{I}}$-lacunary arithmetic convergence, ${\mathcal{I}}$-Cesàro arithmetic summable and strongly ${\mathcal{I}}$-Cesàro arithmetic summable using weighted density via Orlicz function ${\tilde{\phi}}$. Then, we proved some theorems associated with these concepts, and we examined the relationship between them. Finally, we establish some sequential properties of ${\mathcal{I}}$-lacunary arithmetic statistical continuity.