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CERTAIN ASPECTS OF I-LACUNARY ARITHMETIC

STATISTICAL CONVERGENCE

MEHMET GÜRDAL

Abstract. In this paper, we firstly presented the definitions of arithmetic

I-statistically convergence, I-lacunary arithmetic statistically convergence,

strongly I-lacunary arithmetic convergence, I-Cesàro arithmetic summable
and strongly I-Cesàro arithmetic summable using weighted density via

Orlicz function ϕ̃. Then, we proved some theorems associated with these
concepts, and we examined the relationship between them. Finally, we

establish some sequential properties of I-lacunary arithmetic statistical

continuity.
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1. Introduction

The idea of statistical convergence was first introduced by Fast [9]. Statis-
tical convergence has several applications in different fields of mathematics like
number theory, trigonometric series, summability theory, statistics and proba-
bility theory, measure theory, optimization, approximation theory and rough set
theory. Since then several generalizations and applications of this concept have
been investigated by various authors, namely Fridy [10], Gürdal and Huban [15],
Nabiev et al. [28], and many others (see [12, 16]). Also, the readers should refer
to the monographs [2] and [26] for the background on the sequence spaces and
related topics. The idea of arithmetic convergence was introduced by Ruckle
[30]. The studies on arithmetic convergence and related results can be found in
[20, 21, 22, 23, 34, 35, 36]. Kostyrko et al. [24] extended the notion of statistical
convergence to ideal convergence and established some basic theorems. On the
other hand, the new form of convergence called I-statistical convergence has
been introduced in [5]. Recently lots of interesting developments have occurred
in I-statistical convergence and related topics (see [8, 19, 33]).
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In this study, we introduce the concepts of arithmetic I-statistically ϕ̃-conver-

gence of weight g, I-lacunary arithmetic statistically ϕ̃-convergence of weight g,

strongly I-lacunary arithmetic ϕ̃-convergence of weight g, I-Cesàro arithmetic

ϕ̃-summable of weight g and strongly I-Cesàro arithmetic ϕ̃-summable of weight
g and study some relations among these new concepts. We also establish some

sequential properties of I-lacunary arithmetic statistical ϕ̃-continuity.

2. Basic Concepts

A sequence x = (xm) is called arithmetically convergent if for each ε > 0
there is an integer n such that for every integer m we have

∣∣xm − x⟨m,n⟩
∣∣ < ε,

where the symbol ⟨m,n⟩ denotes the greatest common divisor of two integers m
and n. We denote the sequence space of all arithmetic convergent sequence by
AC. Firstly, arithmetic convergence was introduced due to Ruckle [30]. Later
Yaying and Hazarika was studied this notion in many ways [34, 35, 36].

Statistical convergence depends on the natural density of subsets of the set N
of positive integers. The natural density δ(A) of a subset A of N is defined by

δ (A) = lim
t→∞

t−1 |{m ≤ t : m ∈ A}|

where the vertical bars indicate the number of elements in the enclosed set. A
sequence (xm) is said to be statistically convergent to ℓ if for each ε > 0,

lim
t→∞

t−1 |{m ≤ t : |xm − ℓ| ≥ ε}| = 0.

In another direction, a new type of convergence called lacunary statistical con-
vergence was introduced in [11] as follows: A lacunary sequence is an increasing
sequence θ = (kr) such that k0 = 0 and hr = kr − kr−1 → ∞, as r → ∞. Here,
the intervals determined by θ will be denoted by Ir = (kr−1, kr] and qr = kr

kr−1
.

Definition 2.1. A sequence (xm) of real numbers is said to be lacunary statis-
tically convergent to ℓ if for any ε > 0,

lim
r→∞

h−1
r |{m ∈ Ir : |xm − ℓ| ≥ ε}| = 0.

In [11] the relation between lacunary statistical convergence and statistical
convergence was established among other things. And the notion of lacunary
convergence has been investigated by many authors [4, 19, 25].

In several literary works, statistical convergence of any real sequence is identi-
fied relatively to absolute value. While we have known that the absolute value of

real numbers is special of an Orlicz function [29], that is, a function ϕ̃ : R → R in
such a way that it is even, non-decreasing on R+, continuous on R, and satisfying

ϕ̃(x) = 0 if and only if x = 0 and ϕ̃(x) → ∞ as x → ∞.

Further, an Orlicz function ϕ̃ : R → R is said to satisfy the △2 condition, if

there exists an positive real number M such that ϕ̃(2x) ≤ M.ϕ̃(x) for every
x ∈ R+. In [29], Rao and Ren describes some important applications of Orlicz
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functions in many areas such as economics, stochastic problems etc. The reader
can also refer to the paper [6] and recent monograph [3] related with various
ways to generalize Orlicz sequence spaces systematically and investigate several
structural properties of such spaces. Few examples of Orlicz functions are given
below:

Example 2.2. (i) For a fixed r ∈ N, the function ϕ̃ : R → R defined as

ϕ̃(x) = |x|r is an Orlicz function.

(ii) The function ϕ̃ : R → R defined as ϕ̃(x) = x2 is an Orlicz function
satisfying the △2 condition.

(iii) The function ϕ̃ : R → R defined as ϕ̃(x) = e|x| − |x| − 1 is an Orlicz
function not satisfying the △2 condition.

(iv) The function ϕ̃ : R → R defined as ϕ̃(x) = x3 is not an Orlicz function.

Definition 2.3. ([32]) Let ϕ̃ : R → R be an Orlicz function. A sequence

x = (xm) is said to be statistically ϕ̃-convergent to L if for each ε > 0,

lim
t

1

t

∣∣∣{m ≤ t : ϕ̃ (xm − L) ≥ ε
}∣∣∣ = 0.

Recently the notion of statistically ϕ̃-convergent has been investigated by
many authors [7, 8, 18, 19].

And the concept of ideal convergence is introduced as a generalization of
statistical convergence. First of all this notion was highlighted by Kostyrko et
al. [24]. Later on it was studied by Hazarika and Esi and many others [13, 14, 17].

Definition 2.4. A family I ⊂ 2N is said to be an ideal of N provided:
(a) ∅ ∈ I,
(b) A, B ∈ I implies A ∪B ∈ I,
(c) A ∈ I, B ⊂ A implies B ∈ I.

Definition 2.5. A non-empty family F ⊂ 2N is said to be an filter of N pro-
vided:
(a) ∅ /∈ F ,
(b) A, B ∈ F implies A ∩B ∈ F,
(c) A ∈ F, A ⊂ B implies B ∈ F.

If I is a proper ideal of N (i.e., N /∈ I), then the family of sets

F (I) = {M ⊂ N : ∃A ∈ I : M = N\A}

is filter of N. It is called the filter associated with the ideal.
A proper ideal I is called to be admissible if {n} ∈ I for each n ∈ N. Through-

out the paper we consider that I is a proper admissible ideals of N.
Let I be an admissible ideal on N and x = (xk) be a sequence of points of

elements of R. We say that the sequence x is I-convergent to L ∈ R if for each
ε > 0, the set A (ε) = {m ∈ N : |xm − L| ≥ ε} ∈ I. Take for I the class Ifin
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of all finite subsets of N. Then Ifin is a non-trivial admissible ideal and Ifin-
convergence coincides with the usual convergence. For more information about
I-convergent, see the references in [27].

We also recall that the concept of I-statistically convergent is studied in [5].
A sequence (xm) is said to be I-statistically convergent to L if for each ε > 0
and δ > 0, {

t ∈ N :
1

t
|{m ≤ t : |xm − L| ≥ ε}| ≥ δ

}
∈ I.

In this case, L is called I-statistical limit of the sequence (xm) and we write
I-st− limm→∞ xm = L.

In the recent times in [1], using the natural density of weight g where g :

N → [0,∞) is a function with property that lim
n→∞

g (n) = ∞ and
n

g (n)
↛ 0 as

n → ∞, the concept of natural density was extended as follows: The upper
density of weight g was defined by

δg (A) = lim
n→∞

sup
A (1, n)

g (n)

for A ⊂ N, where A (1, n) denotes the number of elements in A ∩ [1, n] . The
lower density of weight g is defined in a similar manner. Then, the family

Ig =
{
A ⊂ N : δg (A) = 0

}
creates an ideal. It was seen in [1] that N ∈ Ig iff

n

g (n)
→ 0 as n → ∞.

Furthermore, we suppose that n/g (n) ↛ 0 as n → ∞ so that N /∈ Ig and Ig
is a proper admissible ideal of N. We denote by G the collection of such weight
functions g satisfying the above properties. As a natural consequence we can
introduce the following definition.

Definition 2.6. A sequence x = (xm) of real numbers is said to δg-statistically

ϕ̃-convergent to L if for any given ε > 0,

δg

({
m ∈ N : ϕ̃ (xm − L) ≥ ε

})
= 0.

Remark 2.1. If we take ϕ̃ (x) = |x| , then convergent concepts in above defini-
tion coincide with δg-statistically convergence in [31].

3. Main results

In this section, we give the definitions of arithmetic I-statistically conver-
gence, I-lacunary arithmetic statistically convergence, strongly I-lacunary arith-
metic convergence, I-Cesàro arithmetic summable and strongly I-Cesàro arith-

metic summable using weighted density via Orlicz function ϕ̃. Also, we study
the relationship between them and obtain some interesting results.
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Definition 3.1. Let ϕ̃ : R → R be an Orlicz function. A sequence x = (xm) is

said to be arithmetic statistically ϕ̃-convergent if for ε > 0, there is an integer n
such that

lim
t→∞

1

t

∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ = 0.

ASC
(
ϕ̃
)
is used to denote the set of all arithmetic statistical ϕ̃-convergence

sequences. Therefore, for ε > 0 and integer n

ASC
(
ϕ̃
)
=

{
x = (xm) : lim

t→∞

1

t

∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ = 0

}
.

It is written as ASC
(
ϕ̃
)
− limxm = x⟨m,n⟩.

Definition 3.2. Let ϕ̃ : R → R be an Orlicz function. A sequence x = (xm) is

called to be lacunary arithmetic statistically ϕ̃-convergent if for ε > 0 there is
an integer n such that

lim
r→∞

1

hr

∣∣∣{m ∈ Ir : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ = 0.

We give

ASCθ

(
ϕ̃
)
=

{
x = (xm) : lim

r→∞

1

hr

∣∣∣{m ∈ Ir : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ = 0

}
.

It is written as ASCθ

(
ϕ̃
)
− limxm = x.

We define the following:

Definition 3.3. Let ϕ̃ : R → R be an Orlicz function. A sequence x = (xm) is

called to be arithmetic I-statistically ϕ̃-convergent of weight g if for ε > 0 and
δ > 0, there is an integer n such that{

t ∈ N :
1

g (t)

∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ ≥ δ

}
belongs to I.

We useAISC
(
ϕ̃
)g

to indicate the set of all arithmetic I-statistical ϕ̃-convergent
of weight g sequences. Thus, for ε > 0, δ > 0 and integer n

AISC
(
ϕ̃
)g

=

{
x = (xm) :

{
t ∈ N :

1

g (t)

∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

≥ δ} ∈ I} .

We write AISC
(
ϕ̃
)g

− limxm = x⟨m,n⟩ to denote the sequence (xm) is arith-

metic I-statistically ϕ̃-convergent of weight g to x⟨m,n⟩.
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Remark 3.1. If we take ϕ̃ (x) = |x| , g (t) = t and I = Iδ = {A : δ (A) = 0} ,
then AISC

(
ϕ̃
)g

concepts coincide with arithmetic statistically convergent in

[34].

Definition 3.4. Let ϕ̃ : R → R be an Orlicz function. A sequence x = (xm)

is said to be I-lacunary arithmetic statistically ϕ̃-convergent of weight g if for
ε > 0 and δ > 0, there is an integer n such that{

r ∈ N :
1

g (hr)

∣∣∣{m ∈ Ir : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ ≥ δ

}
belongs to I.

We write

AISCθ

(
ϕ̃
)g

=

{
x = (xm) :

{
r ∈ N :

1

g (hr)

∣∣∣{m ∈ Ir : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

≥ δ} ∈ I} .

We will use AISCθ

(
ϕ̃
)g

− limxm = x⟨m,n⟩ to show that the sequence (xm) is

I-lacunary arithmetic statistically ϕ̃-convergent of weight g to x⟨m,n⟩.

Remark 3.2. It should be noted that lacunary statistical ϕ̃-convergence of

weight g has not been studied till now. Obviously lacunary statistical ϕ̃-convergence

of weight g is a special case of I-lacunary statistical ϕ̃-convergence of weight g

when we take I = Ifin. So, some properties of lacunary statistical ϕ̃-convergence
of weight g can be easily obtained from our results with obvious modifications.

Theorem 3.5. Let ϕ̃ : R → R be an Orlicz function and g1, g2 ∈ G be such

that there exist M > 0 and j0 ∈ N such that g1(x)
g2(x)

≤ M for all n ≥ j0. Then

AISC
(
ϕ̃
)g1

⊂ AISC
(
ϕ̃
)g2

.

Proof. For any ε > 0,∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

g2 (t)
=

g1 (t)

g2 (t)
.

∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

g1 (t)

≤ M.

∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

g1 (t)

for n ≥ j0. Hence for any δ > 0,{
t ∈ N :

1

g2 (t)

∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ ≥ δ

}
⊂
{
t ∈ N :

1

g1 (t)

∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ ≥ δ

M

}
∪ {1, 2, ..., j0} .
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If (xm) ∈ AISC
(
ϕ̃
)g1

then the set on the right hand side belongs to the ideal

I and so the set on the left hand side also belongs to I. This shows that

AISC
(
ϕ̃
)g1

⊂ AISC
(
ϕ̃
)g2

. □

Definition 3.6. Let ϕ̃ : R → R be an Orlicz function and θ be a lacunary
sequence. A sequence x = (xm) is called to be strongly I-lacunary arithmetic

ϕ̃-convergent of weight g if for ε > 0, there is an integer n such that{
r ∈ N :

1

g (hr)

∑
m∈Ir

ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε

}
belongs to I.

We use ANθ [I]
(
ϕ̃
)g

− limxm = x⟨m,n⟩ to indicate the sequence (xm) is

strongly I-lacunary arithmetic convergent of weight g to x⟨m,n⟩.

Theorem 3.7. Let ϕ̃ : R → R be an Orlicz function, θ = {kr} be a lacunary
sequence and I be an admissible ideal.

(i) If ANθ [I]
(
ϕ̃
)g

− limxm = x⟨m,n⟩, then AISCθ

(
ϕ̃
)g

− limxm = x⟨m,n⟩.

(ii) If x = (xm) ∈ ℓ∞, we denote the space of all bounded sequences by ℓ∞

and AISCθ

(
ϕ̃
)g

− limxm = x⟨m,n⟩, then ANθ [I]
(
ϕ̃
)g

− limxm = x⟨m,n⟩.

Proof. (i) If ε > 0 and ANθ [I]
(
ϕ̃
)g

− limxm = x⟨m,n⟩, we can write∑
m∈Ir

ϕ̃
(
xm − x⟨m,n⟩

)
≥

∑
m∈Ir

ϕ̃(xm−x⟨m,n⟩)≥ε

ϕ̃
(
xm − x⟨m,n⟩

)

≥ ε.
∣∣∣{m ∈ Ir : ϕ̃

(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

and so

1

εg (hr)

∑
m∈Ir

ϕ̃
(
xm − x⟨m,n⟩

)
≥ 1

g (hr)

{
m ∈ Ir : ϕ̃

(
xm − x⟨m,n⟩

)
≥ ε
}
.

Then, for any δ > 0{
r ∈ N :

1

g (hr)

∣∣∣{m ∈ Ir : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ ≥ δ

}
⊆

{
r ∈ N :

1

g (hr)

∑
m∈Ir

ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε.δ

}
∈ I.

Since ANθ [I]
(
ϕ̃
)g

− limxm = x⟨m,n⟩, so it follows that AISCθ − limxm =
x⟨m,n⟩.
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(ii) Suppose that AISCθ

(
ϕ̃
)g

− limxm = x⟨m,n⟩ and xm ∈ ℓ∞. Then there

exists an M > 0 such that

ϕ̃
(
xm − x⟨m,n⟩

)
≤ M

for integer n. Given ε > 0, we have

1

g (hr)

∑
m∈Ir

ϕ̃
(
xm − x⟨m,n⟩

)
=

1

g (hr)

∑
m∈Ir

ϕ̃(xm−x⟨m,n⟩)≥ ε
2

ϕ̃
(
xm − x⟨m,n⟩

)

+
1

g (hr)

∑
m∈Ir

ϕ̃(xm−x⟨m,n⟩)< ε
2

ϕ̃
(
xm − x⟨m,n⟩

)

≤ M

g (hr)

∣∣∣{m ∈ Ir : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε

2

}∣∣∣+ ε

2
.

Consequently, we have{
r ∈ N :

1

g (hr)

∑
m∈Ir

ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε

}

⊆
{
r ∈ N :

1

g (hr)

∣∣∣{m ∈ Ir : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε

2

}∣∣∣ ≥ ε

2M

}
∈ I.

Hence, we get ANθ [I]
(
ϕ̃
)g

− limxm = x⟨m,n⟩. This proof is completed. □

Theorem 3.8. Let ϕ̃ : R → R be an Orlicz function and θ = {kr} be a lacunary

sequence. If lim infr
g(hr)
g(kr)

> 1, then

AISC
(
ϕ̃
)g

− limxm = x⟨m,n⟩ implies AISCθ

(
ϕ̃
)g

− limxm = x⟨m,n⟩.

Proof. Suppose that lim infr
g(hr)
g(kr)

> 1, then we can find a E > 1 such that for

sufficiently large r we have
g (hr)

g (kr)
≥ E.

Since AISC
(
ϕ̃
)g

− limxm = x⟨m,n⟩, then for every ε > 0, sufficiently large r

and integer n, we have

1

g (kr)

∣∣∣{m ≤ kr : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

≥ 1

g (kr)

∣∣∣{m ∈ Ir : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

≥ E.
1

g (hr)

∣∣∣{m ∈ Ir : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ .
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Then for any δ > 0, we get{
r ∈ N :

1

g (hr)

∣∣∣{m ∈ Ir : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ ≥ δ

}
⊆
{
r ∈ N :

1

g (kr)

∣∣∣{m ≤ kr : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ ≥ E.δ

}
∈ I.

This shows that AISCθ

(
ϕ̃
)g

− limxm = x⟨m,n⟩. □

For the next result we assume that the lacunary sequence θ satisfies the con-
dition that for any set C ∈ F (I), ∪{m : kr−1 ≤ m ≤ kr, r ∈ C} ∈ F (I) .

Theorem 3.9. Let ϕ̃ : R → R be an Orlicz function. If θ = {kr} is a lacunary

sequence with supr
r−1∑
i=0

g(hi+1)
g(kr−1)

= E < ∞, then

AISCθ

(
ϕ̃
)g

− limxm = x⟨m,n⟩ implies AISC
(
ϕ̃
)g

− limxm = x⟨m,n⟩.

Proof. Assume that AISCθ

(
ϕ̃
)g

− limxm = x⟨m,n⟩, and for ε, δ, γ > 0 define

the sets

C =

{
r ∈ N :

1

g (hr)

∣∣∣{m ∈ Ir : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ < δ

}
and

T =

{
t ∈ N :

1

g (t)

∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ < γ

}
.

It is obvious from our assumption that C ∈ F (I), the filter associated with the
ideal I. Further observe that

Aj =
1

g (hj)

∣∣∣{m ∈ Ij : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ < δ

for all j ∈ C. Let t ∈ N be such that kr−1 < t ≤ kr for some r ∈ C. Now

1

g (t)

∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

≤ 1

g (kr−1)

∣∣∣{m ≤ kr : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

=
1

g (kr−1)

∣∣∣{m ∈ I1 : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

+
1

g (kr−1)

∣∣∣{m ∈ I2 : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

+ ...+
1

g (kr−1)

∣∣∣{m ∈ Ir : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

=
g (k1)

g (kr−1)

1

g (h1)

∣∣∣{m ∈ I1 : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣
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+
g (k2 − k1)

g (kr−1)

1

g (h2)

∣∣∣{m ∈ I2 : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

+ ...+
g (kr − kr−1)

g (kr−1)

1

g (hr)

∣∣∣{m ∈ Ir : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

=
g (k1)

g (kr−1)
A1 +

g (k2 − k1)

g (kr−1)
A2 + ...+

g (kr − kr−1)

g (kr−1)
Ar

≤
{
sup
j∈C

Aj

}
sup
r

r−1∑
i=0

g (ki+1 − ki)

g (kr−1)
< Eδ.

Choosing γ = δ
E and in view of the fact that ∪{t : kr−1 < t < kr, r ∈ C} ⊂ T

where C ∈ F (I) it follows from our assumption on θ that the set T also belongs
to F (I) and this completes the proof of the theorem. □

Now, we examine I-Cesàro arithmetic ϕ̃-summable and strongly I-Cesàro
arithmetic ϕ̃-summable using weighted density.

Definition 3.10. Let ϕ̃ : R → R be an Orlicz function. A sequence x = (xm)

is said to be I-Cesàro arithmetic ϕ̃-summable of weight g if for ε > 0, there is
an integer n such that{

t ∈ N : ϕ̃

(
1

g (t)

t∑
m=1

(
xm − x⟨m,n⟩

))
≥ ε

}

belongs to I. In this case, we write AC1 (I)
(
ϕ̃
)g

− limxm = x⟨m,n⟩.

Definition 3.11. Let ϕ̃ : R → R be an Orlicz function. A sequence x = (xm)

is said to be strongly I-Cesàro arithmetic ϕ̃-summable of weight g if for ε > 0,
there is an integer n such that{

t ∈ N :
1

g (t)

t∑
m=1

ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε

}

belongs to I. In this case, we write AC1 [I]
(
ϕ̃
)g

− limxm = x⟨m,n⟩.

Theorem 3.12. Let ϕ̃ : R → R be an Orlicz function. If AC1 [I]
(
ϕ̃
)g

−

limxm = x⟨m,n⟩, then AISC
(
ϕ̃
)g

− limxm = x⟨m,n⟩.

Proof. Let AC1 [I]
(
ϕ̃
)g

− limxm = x⟨m,n⟩, and ε > 0 given. Then

t∑
m=1

ϕ̃
(
xm − x⟨m,n⟩

)
≥

t∑
m=1

ϕ̃(xm−x⟨m,n⟩)≥ε

ϕ̃
(
xm − x⟨m,n⟩

)

≥ ε.
∣∣∣{m ≤ t : ϕ̃

(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣
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and so

1

ε.g (t)

t∑
m=1

ϕ̃
(
xm − x⟨m,n⟩

)
≥ 1

g (t)

∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ .

Then for any δ > 0{
t ∈ N :

1

g (t)

∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ ≥ δ

}
⊆

{
t ∈ N :

1

g (t)

t∑
m=1

ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε.δ

}
∈ I.

This proves the result. □

Theorem 3.13. Let ϕ̃ : R → R be an Orlicz function and x = (xm) ∈ ℓ∞. If

AISC
(
ϕ̃
)g

− limxm = x⟨m,n⟩ then, AC1 [I]
(
ϕ̃
)g

− limxm = x⟨m,n⟩.

Proof. Suppose that x = (xm) is bounded and AISC
(
ϕ̃
)g

− limxm = x⟨m,n⟩.

Then there is a B such that ϕ̃
(
xm − x⟨m,n⟩

)
≤ B for all n. Given ε > 0, we

have

1

g (t)

t∑
m=1

ϕ̃
(
xm − x⟨m,n⟩

)
=

1

g (t)

t∑
m=1

ϕ̃(xm−x⟨m,n⟩)≥ε

ϕ̃
(
xm − x⟨m,n⟩

)

+
1

g (t)

t∑
m=1

ϕ̃(xm−x⟨m,n⟩)<ε

ϕ̃
(
xm − x⟨m,n⟩

)

≤ 1

g (t)
.B
∣∣∣{m ≤ t : ϕ̃

(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣

+
1

g (t)
ε
∣∣∣{m ≤ t : ϕ̃

(
xm − x⟨m,n⟩

)
< ε
}∣∣∣

≤ B

g (t)

∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣+ ε.

Then for any δ > 0,{
t ∈ N :

1

g (t)

t∑
m=1

ϕ̃
(
xm − x⟨m,n⟩

)
≥ δ

}

⊆
{
t ∈ N :

1

g (t)

∣∣∣{m ≤ t : ϕ̃
(
xm − x⟨m,n⟩

)
≥ ε
}∣∣∣ ≥ δ

B

}
∈ I.

Therefore AC1 [I]
(
ϕ̃
)g

− limxm = x⟨m,n⟩. □

Now, we shall examine I-lacunary arithmetic statistical ϕ̃-continuity and ob-
tain some interesting results.
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Definition 3.14. Let ϕ̃ : R → R be an Orlicz function. A function f defined on

a subset K of R is said to be I-lacunary arithmetic statistical ϕ̃-continuous of

weight g if it preserves I-lacunary arithmetic statistically ϕ̃-convergent of weight

g, i.e. if AISCθ

(
ϕ̃
)g

− limxm = x⟨m,n⟩ implies AISCθ

(
ϕ̃
)g

− lim f (xm) =

f
(
x⟨m,n⟩

)
.

We shall write AISCθ

(
ϕ̃
)g

continuous function to denote I-lacunary arith-

metic statistical ϕ̃-continuous function of weight g.

It is easy to see that the sum and the difference of two AISCθ

(
ϕ̃
)g

continuous

functions is AISCθ

(
ϕ̃
)g

continuous. Also the composition of two AISCθ

(
ϕ̃
)g

continuous function is again AISCθ

(
ϕ̃
)g

continuous. In the classical case, it

is known that the uniform limit of sequentially continuous function is sequen-

tially continuous, now we see that the uniform limit of AISCθ

(
ϕ̃
)g

continuous

functions is also AISC
(
ϕ̃
)g

continuous.

Theorem 3.15. Let ϕ̃ : R → R be an Orlicz function, (fm)m∈N be a sequence of

AISCθ

(
ϕ̃
)g

continuous functions defined on a subset K of R and (fm) be uni-

formly ideally ϕ̃-convergent of weight g to a function f . Then f is AISCθ

(
ϕ̃
)g

continuous.

Proof. Let ε > 0 and (xm) be any AISCθ

(
ϕ̃
)g

convergent sequence on a

bounded subset K of R. By the uniform ϕ̃-convergence of fm, there exists

N ∈ N such that ϕ̃ (fm (x)− f (x)) < ε
3 for all m ≥ N and for all x ∈ K.

Since fk is AISCθ

(
ϕ̃
)g

continuous on K, we have for an integer n{
r ∈ N :

1

g (hr)

∣∣∣{m ∈ Ir : ϕ̃
(
fk (xm)− fk

(
x⟨m,n⟩

))
≥ ε

3

}∣∣∣ ≥ δ

}
∈ I.

On the other hand, for an integer n we have∣∣∣{m ∈ Ir : ϕ̃
(
f (xm)− f

(
x⟨m,n⟩

))
≥ ε

3

}∣∣∣
≤
∣∣∣{m ∈ Ir : ϕ̃

(
fk
(
x⟨m,n⟩

)
− f

(
x⟨m,n⟩

))
≥ ε

3

}∣∣∣
+
∣∣∣{m ∈ Ir : ϕ̃

(
fk
(
x⟨m,n⟩

)
− fk (xm)

)
≥ ε

3

}∣∣∣
+
∣∣∣{m ∈ Ir : ϕ̃ (fk (xm)− f (xm)) ≥ ε

3

}∣∣∣ .
Then, for any δ > 0, we get{

r ∈ N :
1

g (hr)

∣∣∣{m ∈ Ir : ϕ̃
(
f (xm)− f

(
x⟨m,n⟩

))
≥ ε

3

}∣∣∣ ≥ δ

}
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⊂
{
r ∈ N :

1

g (hr)

∣∣∣{m ∈ Ir : ϕ̃
(
fk
(
x⟨m,n⟩

)
− f

(
x⟨m,n⟩

))
≥ ε

3

}∣∣∣ ≥ δ

}
∪
{
r ∈ N :

1

g (hr)

∣∣∣{m ∈ Ir : ϕ̃
(
fk
(
x⟨m,n⟩

)
− fk (xm)

)
≥ ε

3

}∣∣∣ ≥ δ

}
∪
{
r ∈ N :

1

g (hr)

∣∣∣{m ∈ Ir : ϕ̃ (fk (xm)− f (xm)) ≥ ε

3

}∣∣∣ ≥ δ

}
.

Thus, the set on the right hand side belongs to I and so the set on the left hand

side also belongs to I. This shows that f is AISCθ

(
ϕ̃
)g

continuous. □

As an immediate consequence of Theorem 3.15, we have the following result.

Corollary 3.16. Let ϕ̃ : R → R be an Orlicz function. The set of all AISCθ

(
ϕ̃
)g

continuous functions defined on a compact subset K of R is a closed subset of
all continuous function on K.

4. Conclusion

This study makes three contributions to the field of summability theory: (i)
a kind of lacunary statistical and ideal arithmetic convergence for sequences
using weighted density via Orlicz function; (ii) the strongly ideal lacunary arith-
metic convergence for sequence via Orlicz function; and (iii) the concept of I-
Cesàro arithmetic summable and strongly I-Cesàro arithmetic summable for
Orlicz function. The conclusions of this study are more general and a natural
extension of the conventional arithmetic convergence of sequences.

Conflicts of interest : The author declare no conflict of interest.
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6. H. Dutta and F. Başar, A generalization of Orlicz sequence spaces by Cesàro mean of order
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