• Title/Summary/Keyword: convergence rates

Search Result 638, Processing Time 0.027 seconds

Melanoma Classification Using Log-Gabor Filter and Ensemble of Deep Convolution Neural Networks

  • Long, Hoang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1203-1211
    • /
    • 2022
  • Melanoma is a skin cancer that starts in pigment-producing cells (melanocytes). The death rates of skin cancer like melanoma can be reduced by early detection and diagnosis of diseases. It is common for doctors to spend a lot of time trying to distinguish between skin lesions and healthy cells because of their striking similarities. The detection of melanoma lesions can be made easier for doctors with the help of an automated classification system that uses deep learning. This study presents a new approach for melanoma classification based on an ensemble of deep convolution neural networks and a Log-Gabor filter. First, we create the Log-Gabor representation of the original image. Then, we input the Log-Gabor representation into a new ensemble of deep convolution neural networks. We evaluated the proposed method on the melanoma dataset collected at Yonsei University and Dongsan Clinic. Based on our numerical results, the proposed framework achieves more accuracy than other approaches.

Spatial Data Analysis for the U.S. Regional Income Convergence,1969-1999: A Critical Appraisal of $\beta$-convergence (미국 소득분포의 지역적 수렴에 대한 공간자료 분석(1969∼1999년) - 베타-수렴에 대한 비판적 검토 -)

  • Sang-Il Lee
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.2
    • /
    • pp.212-228
    • /
    • 2004
  • This paper is concerned with an important aspect of regional income convergence, ${\beta}$-convergence, which refers to the negative relationship between initial income levels and income growth rates of regions over a period of time. The common research framework on ${\beta}$-convergence which is based on OLS regression models has two drawbacks. First, it ignores spatially autocorrelated residuals. Second, it does not provide any way of exploring spatial heterogeneity across regions in terms of ${\beta}$-convergence. Given that empirical studies on ${\beta}$-convergence need to be edified by spatial data analysis, this paper aims to: (1) provide a critical review of empirical studies on ${\beta}$-convergence from a spatial perspective; (2) investigate spatio-temporal income dynamics across the U.S. labor market areas for the last 30 years (1969-1999) by fitting spatial regression models and applying bivariate ESDA techniques. The major findings are as follows. First, the hypothesis of ${\beta}$-convergence was only partially evidenced, and the trend substantively varied across sub-periods. Second, a SAR model indicated that ${\beta}$-coefficient for the entire period was not significant at the 99% confidence level, which may lead to a conclusion that there is no statistical evidence of regional income convergence in the US over the last three decades. Third, the results from bivariate ESDA techniques and a GWR model report that there was a substantive level of spatial heterogeneity in the catch-up process, and suggested possible spatial regimes. It was also observed that the sub-periods showed a substantial level of spatio-temporal heterogeneity in ${\beta}$-convergence: the catch-up scenario in a spatial sense was least pronounced during the 1980s.

MULTIGRID METHODS FOR THE PURE TRACTION PROBLEM OF LINEAR ELASTICITY: FOSLS FORMULATION

  • Lee, Chang-Ock
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.813-827
    • /
    • 1997
  • Multigrid methods for two first-order system least squares (FOSLS) using bilinear finite elements are developed for the pure traction problem of planar linear elasticity. They are two-stage algorithms that first solve for the gradients of displacement, then for the displacement itself. In this paper, concentration is given on solving for the gradients of displacement only. Numerical results show that the convergences are uniform even as the material becomes nearly incompressible. Computations for convergence rates are included.

  • PDF

A Study on Bandwith Selection Based on ASE for Nonparametric Regression Estimator

  • Kim, Tae-Yoon
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.21-30
    • /
    • 2001
  • Suppose we observe a set of data (X$_1$,Y$_1$(, …, (X$_{n}$,Y$_{n}$) and use the Nadaraya-Watson regression estimator to estimate m(x)=E(Y│X=x). in this article bandwidth selection problem for the Nadaraya-Watson regression estimator is investigated. In particular cross validation method based on average square error(ASE) is considered. Theoretical results here include a central limit theorem that quantifies convergence rates of the bandwidth selector.tor.

  • PDF

A neural network algorithm for the channel assignment in cellular mobile communication (이동통신에서의 채널할당 신경망 알고리즘)

  • 최광호;이강장;김준한;전옥준;조용범
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.5
    • /
    • pp.59-68
    • /
    • 1998
  • This paper proposes a neural network algorithm for a channel assignment in cellular mobile communications. The proposed algorithm is developed base on hopfield neural network in order to minimize the number of channel without a confliction between cells. To compare the performance of the proposed algorithm, we used seven benchmark problems selected from kunz's and funabiki's papers. Experimental results show that the convergence times are reduced form 27% to 66% compared with Kunz's and funabiki's algorithm and vonvergence rates are improved to 100%.

  • PDF

An Efficient Multigrid Diagonalized ADI Method for 3-Dimensional Compressible Flow Analysis (3차원 압축성 유동 해석을 위한 효율적인 다중 격자 DADI 기법)

  • Park Soo-Hyung;Sung Chun-ho;Kwon Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.29-34
    • /
    • 1998
  • An efficient 3-dimensional compressible solver is developed using the second-order upwind TVD scheme and the multigrid diagonalized ADI method. The multigrid method is improved so that the present DADI algorithm obtains better convergence rates. Results are computed on Cray C90 computer for transonic unsaperated flows past ONERA-M6 wing to demonstrate the accuracy and efficiency. The results show good agreement with experimetal data. A reduction of four orders of residual for 3-dimensional transonic flow is obtained about 99 seconds.

  • PDF

Bootstrap Confidence Intervals for a One Parameter Model using Multinomial Sampling

  • Jeong, Hyeong-Chul;Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.465-472
    • /
    • 1999
  • We considered a bootstrap method for constructing confidenc intervals for a one parameter model using multinomial sampling. The convergence rates or the proposed bootstrap method are calculated for model-based maximum likelihood estimators(MLE) using multinomial sampling. Monte Carlo simulation was used to compare the performance of bootstrap methods with normal approximations in terms of the average coverage probability criterion.

  • PDF

An Optical Implementation of Associative Memory Based on Inner Product Neural Network Model

  • Gil, S.K.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.89-94
    • /
    • 1989
  • In this paper, we propose a hybrid optical/digital version of the associative memory which improve hardware efficiency and increase convergence rates. Multifocus hololens are used as space-varient optical element for performing inner product and summation function. The real-time input and the stored states of memory matrix is formated using LCTV. One method of adaptively changing the weights of stored vectors during each iteration is implemented electronically. A design for a optical implementation scheme is discussed and the proposed architecture is demonstrated the ability of retrieving with computer simmulation.

  • PDF

Improved Rate of Convergence in Kohonen Network using Dynamic Gaussian Function (동적 가우시안 함수를 이용한 Kohonen 네트워크 수렴속도 개선)

  • Kil, Min-Wook;Lee, Geuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.204-210
    • /
    • 2002
  • The self-organizing feature map of Kohonen has disadvantage that needs too much input patterns in order to converge into the equilibrium state when it trains. In this paper we proposed the method of improving the convergence speed and rate of self-organizing feature map converting the interaction set into Dynamic Gaussian function. The proposed method Provides us with dynamic Properties that the deviation and width of Gaussian function used as an interaction function are narrowed in proportion to learning times and learning rates that varies according to topological position from the winner neuron. In this Paper. we proposed the method of improving the convergence rate and the degree of self-organizing feature map.

  • PDF

Investigation of phenol phormaldehyde-based photoresist at an initial stage of destruction in $O_2$ and $N_2O$ radiofrequency discharges

  • Shutov, D.A.;Kang, Seung-Youl;Baek, Kyu-Ha;Suh, Kyung-Soo;Min, Nam-Ki;Kwon, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.214-215
    • /
    • 2007
  • Etch rates and surface chemistry of phenol formaldehyde-based photoresist after short time $O_2\;and\;N_2O$ radio frequency (RF) plasma treatment depending on exposure time were investigated. It was found that the etch rate of photoresist sharply increased after discharge turn on and reached a limit with increase in plasma exposure time in both gases. X-ray photoelectron spectroscopy (XPS) analysis showed that the surface chemical structure become nearly constant after the treatment of 15 sec. Concentration of surface oxygen-containing groups after processing both in oxygen and in $N_2O$ plasmas is similar.

  • PDF