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An Optical Implementation of Associative Memory

Based on Inner Product Neural Network Model

X
S.K.Gil, J.J.Eun,
Dept. of Eletronic Eng.,
ABSTRACT

In this paper, we propose a hybrid optical/
digital version of the associative memory which
improve hardware efficiency and increase conver—
gence rates. Multifocus hololens are used as
space- varient optical element for performing inner
product and summation function, The real-time
input and the stored states of memory matrix is
formated using LCTV. One method of adaptively
changing the weights of stored vectors during each
iteration is implemented eletronically. A design
for a optical implementation scheme is discussed
and the proposed architecture is demonstrated the

ability of retrieving with computer simmulation.

1. Introduction

Since Hopfield further extended to structure a
computational model by a notion of energy func-
tion with an outer product nodef? nuch recent works
in optical computing have concentrated on the
associative nenor§?slThese efforts in the field of
associative memory, however, suffer from low
storage capacity, low convergence rates, etc.

To overcome these problems, higher-order non-
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linear discriminant function wodels have been
proposed without implenentatioﬁfﬁl And a simple
implementation of the quadratic associative memory
with outer product storage was repurtegéqlKung and
Liu proposed an optical inner product array
prucessogalfur associative retrieval who reduced
memory size compared to Hopfield’s outer product
nodel.

In our hybrid approach which takes the advantage
of opties ( linear transformation, massive
inter-connectivity, parallelism, high speed ) and
eletronics ( point nonlinearities, programmability),
we implement an associative memory based on inner
product neural network medel wusing multifocus

hololens and LCTV,

2. Inner product neural network model

The simplest model of a asseciative wmemory is
repiesented by Fig.l. This architecture is des-

crived mathematically in the following equations.

L — .
Mn=§lv i : Recording (-D

Vo= My V . Retrieval (2-2)

where { U™, V™ is a set of the stored vectors

for i=1,2,....M, Vis imperfect input vector, V is
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retrieved output vector, and Myis memory matrix.
If the data vectors are chosen to be binary
pattern composed of N bits for all i,
LR R v, i=1,2,... M (2-3)
vhere v’= 8 or I for j=1,2,... N,
We propose an medified autoassociative memory
scheme in which Eq.(2-1)

and Eq.(2-2) can be

subsequently decomposed into two steps as follows,

Forward step;

O A I T (19
X = Ji::,x“’ (25)
where X7 = (x¥, %9, .. X x9)

v = flx ] 28
where f{ ]:nonlinear transformation

function
Backward step;
¥ = il g @n
where h:constant scalar function
L= IV y (= vy (2-8)
V= THIZ) (2-9)

where TH{ ]:threshold operation
The resultént equation is given by

Mom e oay
A LS (¢ =t e ] (2-18)
it J=

The forward step performs an inner product
between the imperfect input vector ﬁ and all the
stored vectors V'in parallel. The resultant inner
products x“are transformed via the nonlinear

transformation function f[1, that could he
different and used as a coefficient #'in a linear
summation of the corresponding stored vectors in
backward step. After adaptive threshold operation
TH{], the retrieved output vector is an estimate of

the stored vector which is the closest to the
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partial or imperfect input vector V. This estimate
is fed back to the forward step and the procedure
is iterated until a stable state is reached,

f block diagram of our proposed associative
memory is shown in Fig.2 which contains twe steps
connected in a loop with nonlinearities in between

then.

3. Optical implementation

A detailed schematic of the hybrid autoassocia-
tive memory in Fig.? can be implemented shown in
Fig.3.

Its implementation depends on the physical
availability of the correlation values and on the
possibility of the point nonlinearities. The use
of LCTV in an inner product associative memory
simplifies interfacing to a computer and allows
the implementation of nonlinear transformation
function in real time.

For autoassociative memory retrieval the stored
matrix formats V%, U“gre identical. This fact can
be utilized to design an optical autoassociative
memory with bi-directional propagation of light and
a common memory matrix. Thus the potential usage
of LCTV is resonable as a memory on which different
weights of nonlinearities can be displayed with
different grey levels simultaneously. Also, an
ipner product and a linear summation can be
performed using multifocus hololens which s
capable of replicating am image, The fabrication
of multifocus hololens is shown in Fig.4, and Fig.5
shows an 2 x 2 image pattern through multifocus

hololens for example.

The procedure of associative retrieval is per-
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formed with forwerd and backward steps.

4. SNR improvement

The retrieved output vector before threshold

operation is given by Eq.(2-18), If the k-th

vector in. the stored memory vectors is the desired

vector which has the largest inner product or
correlation with input vector, Eq.(2-18) can be
expressed by
@, Ao
1=2"+231 4-1)
Tk

Rewriting Eq.(4-1) in terms of matrix elements

when h = 1,

o3
H

di.c N 0~ M 0 ) Y
vjf[):‘_"vg v o+ %%f[%v}vj]
L P) -3 v )

ik

It

=§; + D (4-2)

J J

where C?ﬁs the correlation between ¥ and the
stored vectors Ve,
ficcording to this expansion, the first term is

the "signal” and the second is the “noise” term,
Convergence rate relys on the relative importance
of the signal and the noise.

If the signal to noise ratic (SNR) is defined as

SNR = E( 55} ~ Edinf)

-0 (4-3)

¥e propose to improve the signal to neise alin
by suppressing the small correlations with respect

to the large correlations. Since the cross-talk

among stored vectors can be reduced to small value
by increasing the nonlinearity in the correlation
domain, a n-th power law nomlinearity increase the
difference between the auto-correlation term and

the cross-correlation terms. This nonlinear

rechanisn performs functions analegous teo
"winner-take-all” competitive neural networks.

In Eq.(4-2), then nonlinear transformation func
tion f(} can be used to suppress the noise by
applying a n-th power law which is chosen in Fig.6.

Thus Eq.(4-1) may be rewritten
n n
_ oW il Mo, <
z; = vyl 071+ an;T ¢l 44

Using of the central limit theorem leads to the

following signal to noise ratio.

n! N
SNR = X ]
(2n)! M-1

This exppression for n = 1 is concurred with the

/2

(4-5)

SNR in the Hopfield model and a nonlinear
transformation functien using power law improves
the SNR for larger n. Fig.7 (a) and (h) shows the
SNR with respect to power n when the total number
of bits is 16, But in our proposed architecture,
the SNR is increased during each iteration. This
is the reason why the continuing forward and
backward procedures increase the difference of the
weights among stored vectors. The SNR of our

architecture is exppressed by

1/2

n! N
SNR = b ]
(2n)! M-1

where t is iteration times,

(4-6)

If we require that SNR 2 1, then we get the

storage capacity hound of
n! R

M+ - xN
(2m)

4D

The maximum storage capacity of memory M when

SNR = 1 is shown in Fig.8 (a) and (b).
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5. Simulations

The proposed hybrid associative memory was
simulated on a personal computer, which show the
effects of various nonlinearities on associative
memory convergence rates.

The four vectors, each 18-bit, to be stored are

v (1,1,1,1,0,8,0,6,1,1,1,1,0,8,8,0)
V& (1,0,1,8,1,8,1,9,1,8,1,0,1,8,1,8)
- (1,0,1,9,8,1,0,1,1,0,1,0,0,1,0,1)
Ve (1,0,8,1,8,1,1,0,8,1,1,8,1,8,8,1)

The threshold operation TH{l is set to have a
mean value of auto-correlation and iuss-
correlations, and it is altered adaptively by
particular input.

An use of nonlinearities and an iterative
procedure retrieve one of the stored vectors
correctly. The weights of the stored vectors can
be altered by changing the nonlinear transformation
function., Even if the nonlinear transformation
" fuction is fixed, the weights of the stored vectors
is altered via the forward and backward iterations.
The convergence rate is increased if the nonlinear

transformation function has higher order power law.

Some examples of computer simulation with our

architecture is illustrated as follows:

(Example 1) power law ; n =1
Input  vector : 111180081111008]

1-st Iteration : 1011609611108088

6-th Tteration : 1111998011118008 ; Vv

(Exanple 2) power law ; n =2

Input vector : 111108081111888]1

1-st Tteration : 1811699811188048

o

2-nd Iteration : 1111800811118868 ; V

(Example 3) power law ; n =1
Input  vector : 1610081811181188

1-st Tteration : 1016881616101986

9-th Iteration : 1810181810101818 ; V¥

(Example 4) power law ; 0o =2
Input  vector : 1018081811101188

1-st Iteration : 1010001010101880

4-th Iteration : 1819101818161619 ; v

(Example 5) power law ; n =2
Input  vector : 08119800111818186

1-st Tteration : 10110810111618080

; false stable vector

6. Conclusions

¥e have proposed a hybrid opticalsdigital version
of the associative memory based on inner product
neural network model which consists of LCTV,
nultifocus hololens, photo-detector, CCD and
computer. We have demonstrated the ability of
retrieving the complete stored vector from memory
by computer simulation. Considering the nonlinear
weights, we have improved the signal te noise ratio
and the maximum number of storage capacity. Our
proposed architecture provides the flexibility of
rapidly and arbitrary changing the weights of the
stored vectors in an associative memory and the
advantage of iteration time and memory size. And
it can be applied to adaptive information
processing and control system as well as pattern

recognition,
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M memory matrix for associative retrieval
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Fig.2 Block diagram of hybrid
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Fig.3 Optical implementation of hybrid

associative memory using inmer product

Fig.4 Fabrication of multifocus hololens

Fig.5 Multiple images from MHL
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Fig.6 Nonlinear transformation function
with n-th power law
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