• 제목/요약/키워드: convergence approach

Search Result 2,223, Processing Time 0.105 seconds

Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan (전향 원심 송풍기의 3차원 유동에 대한 수치해석)

  • Yoon, Joon-Yong;Maeng, Joo-Sung;Byun, Sung-Joon;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.916-923
    • /
    • 2000
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates arc used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady and incompressible. These numerical results are compared with the experimental data inside a rotor and at the fan outlet. Most important flow features are captured through this numerical approach. Finally details of flow field inside a fan are described and analyzed.

Friction-Coefficient-Adaptive Slip Control of Torque Converter Bypass Clutch (토크컨버터 바이패스 클러치의 마찰계수 적응 슬립제어)

  • Hahn, Jin-Oh;Lee, Kyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.739-744
    • /
    • 2004
  • This paper presents an adaptive approach to control the amount of slip of the torque converter bypass clutch using its estimated friction coefficient. The proposed approach can be readily implemented using the inexpensive speed sensors currently installed in an automobile. A measurement feedback control law to drive the slip error to zero together with an adaptation law to identify the unknown friction coefficient is developed using the Lyapunov control design method. The robustness of the control and adaptation laws to parametric and/or torque uncertainties as well as the convergence of the friction coefficient are investigated. Simulation results verify the viability of the proposed control algorithm in real-world vehicle control applications.

  • PDF

The Calculation of Transformer Inductance by the Finite Element Method (유한요소법에 의한 변압기 인덕턴스 계산)

  • 배진호;노채균
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.7
    • /
    • pp.267-275
    • /
    • 1985
  • The finite element method for calculating single phase transformer inductance is presented in this paper. There are three basic definitions of saturated transormer inductance. The set of nonlinear finite element equations is solved by the Newton-Raphson method which assures nearly quadratic convergence of the iteration process. The effect of perturbation of currents of this transformer is used to calculate the saturated winding inductance. This approach is used to calculate the apparent, effective and incremental inductance of single phase transformer. The apparent inductance is in good agreement with resting result. The approach enabled one to study the variation of winding inductance according to the saturation levels in the core at any operating point.

  • PDF

A Fast Off-line Learning Approach to the Rejection of Periodic Disturbances (주기적 외란의 제거를 위한 빠른 오프라인 학습 제어)

  • Chang, Jung-Kook;Kim, Nam-Guk;Lee, Ho-Seong
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.4
    • /
    • pp.167-172
    • /
    • 2007
  • The recently-developed off-line learning control approaches for the rejection of periodic disturbances utilize the specific property that the learning system tends to oscillate in steady state. Unfortunately, the prior works have not clarified how closely the learning system should approach the steady state to achieve the rejection of periodic disturbances to satisfactory level. In this paper, we address this issue extensively for the class of linear systems. We also attempt to remove the effect of other aperiodic disturbances on the rejection of the periodic disturbances effectively. In fact, the proposed learning control algorithm can provide very fast convergence performance in the presence of aperiodic disturbance. The effectiveness and practicality of our work is demonstrated through mathematical performance analysis as well as various simulation results.

  • PDF

The Security Constrained Economic Dispatch with Line Flow Constraints using the Hybrid PSO Algorithm (Hybrid PSO를 이용한 안전도를 고려한 경제급전)

  • Jang, Se-Hwan;Kim, Jin-Ho;Park, Jong-Bae;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1334-1341
    • /
    • 2008
  • This paper introduces an approach of Hybrid Particle Swarm Optimization(HPSO) for a security-constrained economic dispatch(SCED) with line flow constraints. To reduce a early convergence effect of PSO algorithm, we proposed HPSO algorithm considering a mutation characteristic of Genetic Algorithm(GA). In power system, for considering N-1 line contingency, we have chosen critical line contingency through a process of Screening and Selection based on PI(performance Index). To prove the ability of the proposed HPSO in solving nonlinear optimization problems, SCED problems with nonconvex solution spaces are considered and solved with three different approach(Conventional GA, PSO, HPSO). We have applied to IEEE 118 bus system for verifying a usefulness of the proposed algorithm.

Color Preference and Personality Modeling using Fuzzy Logic

  • Kim, Kwang-Baek;Chae, Gyoo-Yong;Abhijit S. Pandya
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.32-35
    • /
    • 2004
  • Human ability to perceive colors is a very subjective matter. The task of measuring and analyzing appropriate colors from colored images, which matches human sensitivity for perceiving colors, has been a challenge to the research community. In this paper we propose a novel approach, which involves the use of fuzzy logic and reasoning to analyze the RGB color intensities extracted from sensory inputs to understand human sensitivity for various colors. Based on this approach, an intelligent system has been built to predict the subject's personality. The results of experiments conducted with this system are discussed in the paper.

A Clinical History Recording Management Scheme on the Multimedia Telemedicine

  • Kim Seok-Soo
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.157-160
    • /
    • 2004
  • The paper's suggestion is about hereditary facts between family members. Diagnosing patients from the point of patients temporary conditions, and so performing primitive examinations and treatments, can lead not only to frequent wrong diagnoses, and to huge medical expenses and times to the patients, but even to critical situation of patients or taking lives away. As a means to cut these cases down to a minimum, sharing medical treatment information between family members is suggested. This approach makes possible understanding physical constitution and environment between family members, and can result in bringing a faster treatment effect if some family member suffers from a similar disease. This approach, since a participation in a family membership effectuates all of family members, can minimize the membership fees, thus enabling inter-family health care on a home doctor basis.

Design Approach with Higher Levels of Abstraction: Implementing Heterogeneous Multiplication Server Farms

  • Moon, Sangook
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.2
    • /
    • pp.112-117
    • /
    • 2013
  • In order to reuse a register transfer level (RTL)-based IP block, it takes another architectural exploration in which the RTL will be put, and it also takes virtual platforms to develop the driver and applications software. Due to the increasing demands of new technology, the hardware and software complexity of organizing embedded systems is growing rapidly. Accordingly, the traditional design methodology cannot stand up forever to designing complex devices. In this paper, I introduce an electronic system level (ESL)-based approach to designing complex hardware with a derivative of SystemVerilog. I adopted the concept of reuse with higher levels of abstraction of the ESL language than traditional HDLs to design multiplication server farms. Using the concept of ESL, I successfully implemented server farms as well as a test bench in one simulation environment. It would have cost a number of Verilog/C simulations if I had followed the traditional way, which would have required much more time and effort.

k-NN Join Based on LSH in Big Data Environment

  • Ji, Jiaqi;Chung, Yeongjee
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.99-105
    • /
    • 2018
  • k-Nearest neighbor join (k-NN Join) is a computationally intensive algorithm that is designed to find k-nearest neighbors from a dataset S for every object in another dataset R. Most related studies on k-NN Join are based on single-computer operations. As the data dimensions and data volume increase, running the k-NN Join algorithm on a single computer cannot generate results quickly. To solve this scalability problem, we introduce the locality-sensitive hashing (LSH) k-NN Join algorithm implemented in Spark, an approach for high-dimensional big data. LSH is used to map similar data onto the same bucket, which can reduce the data search scope. In order to achieve parallel implementation of the algorithm on multiple computers, the Spark framework is used to accelerate the computation of distances between objects in a cluster. Results show that our proposed approach is fast and accurate for high-dimensional and big data.

A new approach to the stabilization and convergence acceleration in coupled Monte Carlo-CFD calculations: The Newton method via Monte Carlo perturbation theory

  • Aufiero, Manuele;Fratoni, Massimiliano
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1181-1188
    • /
    • 2017
  • This paper proposes the adoption of Monte Carlo perturbation theory to approximate the Jacobian matrix of coupled neutronics/thermal-hydraulics problems. The projected Jacobian is obtained from the eigenvalue decomposition of the fission matrix, and it is adopted to solve the coupled problem via the Newton method. This avoids numerical differentiations commonly adopted in Jacobian-free Newton-Krylov methods that tend to become expensive and inaccurate in the presence of Monte Carlo statistical errors in the residual. The proposed approach is presented and preliminarily demonstrated for a simple two-dimensional pressurized water reactor case study.