• Title/Summary/Keyword: convergence approach

Search Result 2,190, Processing Time 0.029 seconds

Nonlinear Compensation of A Secondary Path in Active Noise Control Using A Modified Filtered-X LMS Algorithm (수정된 FXLMS 알고리듬을 이용한 능동소음제어 시스템 2차 경로 비선형 특성 적응보상 기법)

  • Jeong, I.S.;Ahn, K.Y.;Nam, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.22-25
    • /
    • 2004
  • In active noise control (ANC) system, the convergence behavior of the Filtered- X Least Mean Square (FXLMS) algorithm may be affected by nonlinear distortion in the secondary path as in the power amplifiers (e.g., saturation), loudspeakers and transducers. This distortion may yields degrading the error reduction performance of the ANC systems. In this paper, the authors of this paper propose a more improved and stable FXLMS algorithm to compensate for the undesirable nonlinearity of the secondary-path, whereby the third-order Volterra model was employed for the identification of the nonlinear secondary-path. In particular, the proposed approach was based on the modification of the conventional FXLMS algorithm. Finally, the simulation results showed that the proposed approach yields better convergence property and more stable performance in the ANC systems.

  • PDF

2 Dimensional Nonlinear Finite Element Analysis for Layered Elastomeric Bearings (비선형 유한요소법에 의한 탄성받침의 이차원 해석)

  • Park, Moon-Ho;Kim, Jin-Kyu;Lee, Seong-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.4
    • /
    • pp.329-336
    • /
    • 2000
  • A geometric and material nonlinear finite element analysis is developed for the layered elastomeric bearings. In this study, a mixed variational approach with separate variables is used to describe the displacement and volume change of rubber. To represent finely deformed behavior, Kirchoff stress tensors are used and converted Eulerian stress tensors to describe real physical meanings. Newton's method is utilized to solve the governing nonlinear finite element equations. Numerical test are performed in the case of compression and shear to verify the theory and to illustrate the application of this analysis. And the results of this study were compared to the results of Moore's discrete finite element analysis.

  • PDF

On Securing Web-based Educational Online Gaming: Preliminary Study

  • Yani, Kadek Restu;Prihatmanto, Ary Setijadi;Rhee, Kyung-Hyune
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.767-770
    • /
    • 2015
  • With the deployment of web-based educational game over the internet, the user's registration becomes a critical element. The user is authenticated by the system using username, password, and unique code. However, it cannot be handled properly because the data is transmitted through insecure channel on the network. Hence, security requirement is needed to avoid identity leakage from malicious user. In this paper, we propose a secure communication approach using SSL protocol for an online game. We also describe the security requirements for our approach. In future work, we intend to configure and implement the SSL protocol by enabling HTTPS in web-based online game.

Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells

  • Li, Haichao;Pang, Fuzhen;Du, Yuan;Gao, Cong
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.163-180
    • /
    • 2019
  • A semi analytical method is employed to analyze free vibration characteristics of uniform and stepped functionally graded circular cylindrical shells under complex boundary conditions. The analytical model is established based on multi-segment partitioning strategy and first-order shear deformation theory. The displacement functions are handled by unified Jacobi polynomials and Fourier series. In order to obtain continuous conditions and satisfy complex boundary conditions, the penalty method about spring technique is adopted. The solutions about free vibration behavior of functionally graded circular cylindrical shells were obtained by approach of Rayleigh-Ritz. To confirm the dependability and validity of present approach, numerical verifications and convergence studies are conducted on functionally graded cylindrical shells under various influencing factors such as boundaries, spring parameters et al. The present method apparently has rapid convergence ability and excellent stability, and the results of the paper are closely agreed with those obtained by FEM and published literatures.

Energy-efficient Power Allocation based on worst-case performance optimization under channel uncertainties

  • Song, Xin;Dong, Li;Huang, Xue;Qin, Lei;Han, Xiuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4595-4610
    • /
    • 2020
  • In the practical communication environment, the accurate channel state information (CSI) is difficult to obtain, which will cause the mismatch of resource and degrade the system performance. In this paper, to account for the channel uncertainties, a robust power allocation scheme for a downlink Non-orthogonal multiple access (NOMA) heterogeneous network (HetNet) is designed to maximize energy efficiency (EE), which can ensure the quality of service (QoS) of users. We conduct the robust optimization model based on worse-case method, in which the channel gains belong to certain ellipsoid sets. To solve the non-convex non-liner optimization, we transform the optimization problem via Dinkelbach method and sequential convex programming, and the power allocation of small cell users (SCUs) is achieved by Lagrange dual approach. Finally, we analysis the convergence performance of proposed scheme. The simulation results demonstrate that the proposed algorithm can improve total EE of SCUs, and has a fast convergence performance.

A Study on a Robust Motion Control of Flexible Manipulator with Five Joint for Untact Working in Filed Work-site

  • Kim, Hee-Jin;Kim, Seong-Il;Jang, Gi-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_1
    • /
    • pp.161-168
    • /
    • 2022
  • This study proposed a new approach to impliment a robusut control of comsumer-friendly flexible manipulator with five joint for untact working in filed work-site. The output redefinition approach was used to overcome the non minimum phase characteristic of the system. The new output is defined so that the zero dynamics related to this output are stable. The control strategy is based on an computed torque method which is applicable to a class of time-invariamt phase linear systems whose uncertainties appear in output loop stable. The controller is composed of a stabilizing joint controller and an output redefinition tracking controller. Experimental results are also presented to verify the effectiveness of the proposed control scheme.

The Resourcefulness of Sponsored Contents on Social Media -A Netnographic Approach to Customer Inspiration Cues-

  • Hyunjeong, Rhee;Kyu-Hye, Lee
    • Journal of Fashion Business
    • /
    • v.26 no.6
    • /
    • pp.116-132
    • /
    • 2022
  • Fashion marketing activity performed by social media influencers (SMIs) has grown exponentially in the past years. Research regarding their marketing power is often discussed in the context of sponsorship disclosure, in order to overcome obstacles of impending regulations that may endanger the authenticity SMIs are perceived to have compared to traditional marketing agents. Upon recent heterogeneous findings, a netnographic approach was taken to examine the actual sponsored posts of SMIs on Instagram. Based on two representative cases that received media coverage, a qualitative analysis of 1,058 comments on Instagram showed customer inspiration and informational social influence regardless of sponsorship disclosures present. Regarding customer inspiration, high frequency of comments including choice imitation intentions was observed. Under certain conditions, customer responses were focused on the SMI's expertise irrespective from the brand being endorsed. Findings show future implications from both an academic and industry-focused perspective for future potential of SMIs in fashion marketing.

Blind signal separation for coprime planar arrays: An improved coupled trilinear decomposition method

  • Zhongyuan Que;Xiaofei Zhang;Benzhou Jin
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.138-149
    • /
    • 2023
  • In this study, the problem of blind signal separation for coprime planar arrays is investigated. For coprime planar arrays comprising two uniform rectangular subarrays, we link the signal separation to the tensor-based model called coupled canonical polyadic decomposition (CPD) and propose an improved coupled trilinear decomposition approach. The output data of coprime planar arrays are modeled as a coupled tensor set that can be further interpreted as a coupled CPD model, allowing a signal separation to be achieved using coupled trilinear alternating least squares (TALS). Furthermore, in the procedure of the coupled TALS, a Vandermonde structure enforcing approach is explicitly applied, which is shown to ensure fast convergence. The results of Monto Carlo simulations show that our proposed algorithm has the same separation accuracy as the basic coupled TALS but with a faster convergence speed.

Real-time collision-free landing path planning for drone deliveries in urban environments

  • Hanseob Lee;Sungwook Cho;Hoon Jung
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.746-757
    • /
    • 2023
  • This study presents a novel safe landing algorithm for urban drone deliveries. The rapid advancement of drone technology has given rise to various delivery services for everyday necessities and emergency relief efforts. However, the reliability of drone delivery technology is still insufficient for application in urban environments. The proposed approach uses the "landing angle control" method to allow the drone to land vertically and a rapidly exploring random tree-based collision avoidance algorithm to generate safe and efficient vertical landing paths for drones while avoiding common urban obstacles like trees, street lights, utility poles, and wires; these methods allow for precise and reliable urban drone delivery. We verified the approach within a Gazebo simulation operated through ROS using a six-degree-of-freedom drone model and sensors with similar specifications to actual models. The performance of the algorithms was tested in various scenarios by comparing it with that of stateof-the-art 3D path planning algorithms.

Game-Theoretic Optimization of Common Control Channel Establishment for Spectrum Efficiency in Cognitive Small Cell Network

  • Jiao Yan
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Cognitive small cell networks, consisting of macro-cells and small cells, are foreseen as a promising candidate solution to address 5G spectrum scarcity. Recently, many technological issues (such as spectrum sensing, spectrum sharing) related to cognitive small cell networks have been studied, but the common control channel (CCC) establishment problem has been ignored. CCC is an indispensable medium for control message exchange that could have a huge significant on transmitter-receiver handshake, channel access negotiation, topology change, and routing information updates, etc. Therefore, establishing CCC in cognitive small cell networks is a challenging problem. In this paper, we propose a potential game theory-based approach for CCC establishment in cognitive radio networks. We design a utility function and demonstrate that it is an exact potential game with a pure Nash equilibrium. To maintain the common control channel list (CCL), we develop a CCC update algorithm. The simulation results demonstrate that the proposed approach has good convergence. On the other hand, it exhibits good delay and overhead of all networks.