• Title/Summary/Keyword: conventional and opportunistic relaying

Search Result 9, Processing Time 0.021 seconds

Achievable Rate Analysis for Opportunistic Non-orthogonal Multiple Access-Based Cooperative Relaying Systems

  • Lee, In-Ho;Lee, Howon
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.630-642
    • /
    • 2017
  • In this paper, we propose the opportunistic non-orthogonal multiple access (NOMA)-based cooperative relaying system (CRS) with channel state information (CSI) available at the source, where CSI for the source-to-destination and source-to-relay links is used for opportunistic transmission. Using the CSI, for opportunistic transmission, the source instantaneously chooses between the direct transmission and the cooperative NOMA transmission. We provide an asymptotic expression for the average achievable rate of the opportunistic NOMA-based CRS under Rayleigh fading channels. We verify the asymptotic analysis through Monte Carlo simulations, and compare the average achievable rates of the opportunistic NOMA-based CRS and the conventional one for various channel powers and power allocation coefficients used for NOMA.

Double Opportunistic Transmit Cooperative Relaying System with GSC in Rayleigh Fading Channels

  • Kim, Nam-Soo;Lee, Ye-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.270-275
    • /
    • 2010
  • In a conventional opportunistic transmit (COT) cooperative relaying system, only the relays that receive signal-to-noise ratio (SNR) from the source and that exceed the threshold transmit to the destination. The COT system, however, only considers the SNR of the source-relay (S-R) path regardless that the SNR of the relay-destination (R-D) path is the opportunistic transmission condition. For that reason, it is not guaranteed that all the transmitted signals from relays exceed the threshold at the destination. Therefore we propose a double opportunistic transmit (DOT) cooperative relaying system - when both of the received SNR from a source and from a destination exceed the threshold, the relay transmits to the destination. It is shown that the proposed DOT system reduces power consumption by 6.9, 20.9, 32.4, and 41.4 % for K =3, 5, 7, and 9, respectively under the given condition of $P_{out}=1{\times}10^{-3}$ and $\overline{\gamma}_{SR}/\Gamma_{SR}$=30 dB, compared to the COT system. We noticed that the performance of the DOT system is superior to that of the COT system for the identical number of active transmit relays under the same condition of the normalized average SNR of $\overline{\gamma}_{RD}/\Gamma_{RD}$.

Cooperative Relaying Scheme Using Multiple Relays in Two-Way Relay Network (양방향 중계 네트워크에서 다중 중계기를 이용한 협력 중계 기법)

  • Park, Ji-Hwan;Kong, Hyung-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.815-822
    • /
    • 2010
  • Two-way relaying scheme based on relay selection can not only achieve higher rate but also get the selection diversity gain according to the number of relays. However the scheme can not achieve combining gain because it does not consider the direct link between users. In this paper, we propose, with multiple relays, opportunistic cooperative two-way relaying scheme and incremental cooperative two-way relaying scheme which can achieve both selection diversity gain and combining gain. Simulation results show that proposed scheme outperform the conventional scheme by achieving both combining gain and selection diversity gain according to the number of relays.

Dual-Hop Amplify-and-Forward Multi-Relay Maximum Ratio Transmission

  • Erdogan, Eylem;Gucluoglu, Tansal
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • In this paper, the performance of dual-hop multi-relay maximum ratio transmission (MRT) over Rayleigh flat fading channels is studied with both conventional (all relays participate the transmission) and opportunistic (best relay is selected to maximize the received signal-to-noise ratio (SNR)) relaying. Performance analysis starts with the derivation of the probability density function, cumulative distribution function and moment generating function of the SNR. Then, both approximate and asymptotic expressions of symbol error rate (SER) and outage probability are derived for arbitrary numbers of antennas and relays. With the help of asymptotic SER and outage probability, diversity and array gains are obtained. In addition, impact of imperfect channel estimations is investigated and optimum power allocation factors for source and relay are calculated. Our analytical findings are validated by numerical examples which indicate that multi-relay MRT can be a low complexity and reliable option in cooperative networks.

Outage Performance Analysis of Partial Relay Selection Based Opportunistic Cooperation in Decode-and-Forward Relaying Systems (디코딩 후 전달 중계 시스템에서 부분 중계 노드 선택 기법 기반 기회적 협력 방식의 아웃티지 성능 분석)

  • Lee, Sangjun;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1804-1810
    • /
    • 2013
  • In this paper, we study the opportunistic cooperation scheme that improves the outage performance through the efficient selection between a cooperative mode and a non-cooperative mode. Especially, in decode-and-forward relaying systems, we analyze the outage performance for the opportunistic cooperation using partial relay selection, where closed-form expressions of exact and asymptotic outage probabilities are derived assuming independent and identically distributed Rayleigh fading channels. In the numerical results, we verify the derived expressions, and investigate the outage performances for various target data rates and different numbers of relays. Also, we compare the outage performances of the conventional cooperation scheme and the opportunistic cooperation scheme.

Coded Cooperation Communication over Two-Way Relay Network (양 방향 중계 네트워크에서의 부호화 협력 통신)

  • Park, Ji-Hwan;Kong, Hyung-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.24-29
    • /
    • 2011
  • Comparing conventional one-way relaying, two-way relaying scheme with network coding can achieve high throughput by reducing the transmission time. Coded cooperation protocol, which is a algorithm that uses coding on physical layer, can achieve high reliability. In this paper, we propose coded cooperation protocol over two-way relay network. Simulation results show proposed protocol has better performance in terms of reliability and throughput compare with conventional amplify and forward protocol. Also, with same throughput, proposed protocol has better performance in terms of reliability compare with the conventional hybrid decoded and forward protocol.

Opportunistic Relay Selection for Joint Decode-and-Forward Based Two-Way Relaying with Network Coding

  • Ji, Xiaodong;Zheng, Baoyu;Zou, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1513-1527
    • /
    • 2011
  • This paper investigates the capacity rate problems for a joint decode-and-forward (JDF) based two-way relaying with network coding. We first characterize the achievable rate region for a conventional three-node network scenario along with the calculation of the corresponding maximal sum-rate. Then, for the goal of maximizing the system sum-rate, opportunistic relay selection is examined for multi-relay networks. As a result, a novel strategy for the implementation of relay selection is proposed, which depends on the instantaneous channel state and allows a single best relay to help the two-way information exchange. The JDF scheme and the scheme using relay selection are analyzed in terms of outage probability, after which the corresponding exact expressions are developed over Rayleigh fading channels. For the purpose of comparison, outage probabilities of the amplify-and-forward (AF) scheme and those of the scheme using relay selection are also derived. Finally, simulation experiments are done and performance comparisons are conducted. The results verify that the proposed strategy is an appropriate method for the implementation of relay selection and can achieve significant performance gains in terms of outage probability regardless of the symmetry or asymmetry of the channels. Compared with the AF scheme and the scheme using relay selection, the conventional JDF scheme and that using relay selection perform well at low signal-to-noise ratios (SNRs).

Exact Outage Probability of Two-Way Decode-and-Forward NOMA Scheme with Opportunistic Relay Selection

  • Huynh, Tan-Phuoc;Son, Pham Ngoc;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5862-5887
    • /
    • 2019
  • In this paper, we propose a two-way relaying scheme using non-orthogonal multiple access (NOMA) technology. In this scheme, two sources transmit packets with each other under the assistance of the decode-and-forward (DF) relays, called as a TWDFNOMA protocol. The cooperative relays exploit successive interference cancellation (SIC) technique to decode sequentially the data packets from received summation signals, and then use the digital network coding (DNC) technique to encrypt received data from two sources. A max-min criterion of end-to-end signal-to-interference-plus-noise ratios (SINRs) is used to select a best relay in the proposed TWDFNOMA protocol. Outage probabilities are analyzed to achieve exact closed-form expressions and then, the system performance of the proposed TWDFNOMA protocol is evaluated by these probabilities. Simulation and analysis results discover that the system performance of the proposed TWDFNOMA protocol is improved when compared with a conventional three-timeslot two-way relaying scheme using DNC (denoted as a TWDNC protocol), a four-timeslot two-way relaying scheme without using DNC (denoted as a TWNDNC protocol) and a two-timeslot two-way relaying scheme with amplify-and-forward operations (denoted as a TWANC protocol). Particularly, the proposed TWDFNOMA protocol achieves best performances at two optimal locations of the best relay whereas the midpoint one is the optimal location of the TWDNC and TWNDNC protocols. Finally, the probability analyses are justified by executing Monte Carlo simulations.

A Bi-Target Based Mobile Relay Selection Algorithm for MCNs

  • Dai, Huijun;Gui, Xiaolin;Dai, Zhaosheng;Ren, Dewang;Gu, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5282-5300
    • /
    • 2017
  • Multi-hop cellular networks (MCNs) reduce the transmit power and improve the system performance. Recently, several research studies have been conducted on MCNs. The mobile relay selection scheme is a rising issue in the design of MCNs that achieves these advantages. The conventional opportunistic relaying (OR) is performed on the single factor for maximum signal-to-interference-plus-noise ratio (SINR). In this paper, a comprehensive OR scheme based on Bi-Target is proposed to improve the system throughput and reduce the relay handover by constraining the amount of required bandwidth and SINR. Moreover, the proposed algorithm captures the variability and the mobility that makes it more suitable for dynamic real scenarios. Numerical and simulation results show the superiority of the proposed algorithm in both enhancing the overall performance and reducing the handover.