• Title/Summary/Keyword: controller design problem

Search Result 910, Processing Time 0.026 seconds

Optimal Fuzzy Controller Design Method using the Genetic Algorithm (유전자 알고리즘을 이용한 최적의 퍼지제어기 설계방식)

  • 손동설;이용구;엄기환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.363-371
    • /
    • 1999
  • In this paper proposes the optimal fuzzy controller design method using the genetic algorithm. Proposed method is that fuzzy rules and input - output scaling factors of the fuzzy controller are determined by using genetic algorithm that is very effectively in the optimization problem. The optimal fuzzy rules of servo system uses the fitness function which are the performance index in fuzzy controller. In order to verify excellent control performances of the proposed control method, we compare the control performance and characteristics about the proposed control method with a conventional fuzzy control method through a lot of simulations and experiments with one link manipulator.

  • PDF

Design of a Robust Controller for Position Control of a Small One-Link Robot Arm with Input Time-Delay (입력 시간지연이 존재하는 소형 1축 로봇 팔 위치제어를 위한 강인 제어기 설계)

  • Jeong, Goo-Jong;Kim, In-Hyuk;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1179-1185
    • /
    • 2010
  • This paper deals with a robust controller design problem for a small one-link robot arm system subject to input time delay and load variations. The uncertain parameters of the system are considered as a disturbance input. A disturbance observer(DOB) has been designed to alleviate disturbance effects and to compensate performance degradation owing to the time-delay. This paper employs a new DOB structure for non-minimum phase systems together with the Smith predictor. We propose a new controller for reducing the both effects of disturbance and time-delay. In order to test the performance of proposed controller, four different other control laws are compared with the proposed one by computer simulations. The simulation results show the effectiveness of the proposed control method.

CONSTRUCTION OF A ROBUST CMPEMSATION CONTROLLER

  • Hyogo, Hidekazu;Kamiya, Yuji;Shibata, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.471-476
    • /
    • 1994
  • In this paper a new controller is proposed which gives the resultant system the appointed input-output properties, low sensitivity and robust stability. The proposed controller consists of a reference model and a robust compensator. The reference model determines the input-output properties of the total system and is constructed by using the nominal model of the plant. We can design the reference model by applying design techniques which pay attention to steady robustness and no attention to sensitivity and robust stability, and need all state variables of the plant. The robust compensator is obtained as a solution of the mixed sensitivity problem in H infinity control theory. Therefore, low sensitivity and robust stability are guaranteed in the resultant system. The simulation experiments show that the proposed controller is effective and useful.

  • PDF

Design of the multivariable hard nonlinear controller using QLQG/$H_{\infty}$ control (QLQG/$H_{\infty}$ 제어를 이용한 다변수 하드비선형 제어기 설계)

  • 한성익;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.81-84
    • /
    • 1996
  • We propose the robust nonlinear controller design methodology, the $H_{\infty}$ constrained quasi - linear quadratic Gaussian control (QLQG/ $H_{\infty}$), for the statistically-linearized multivariable system with hard nonlinearties such as Coulomb friction, deadzone, etc. The $H_{\infty}$ performance constraint is involved in the optimization process by replacing the covariance Lyapunov equation with the Riccati equation whose solution leads to an upper bound of the QLQG performance. Because of the system's nonlinearity, however, one equation among three Riccati equations contain the nonlinear correction terms that are very difficult to solve numerically. To treat this problem, we use simple algebraic techniques. With some analytic transformation for Riccati equations, the nonlinear correction terms can be so eliminated that the set of a linear controller to the different operating points are designed. Synthesizing these via inverse random input describing function (IRIDF) technique, the final nonlinear controller can be designed.

  • PDF

Design of Controllers for the Stable Idle Speed in the Internal Combustion Engine

  • Lee, Young-Choon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.54-60
    • /
    • 2001
  • This paper deals with control design method having anticipation delay which is proposed for the discrete nonlinear engine where system dynamics is not accurate. Due to the induction-to-power delay in internal combustion(IC) engine having abrupt torque loss, underdamping and chattering in engine idle speed becomes a serious problem and it could make drivers uncomfortable. For this reason, Three types of the closed-loop controller are developed for the stable engine idle speed control. The inputs of the controllers are an engine idle speed and air conditioning signal. The output of the controllers is an duty cycle to operate the idle speed control valve(ISCV). The proposed controllers will be useful for improving actual vehicles since these shows good test

  • PDF

Design of Optimal Attitude Controller for a Launch Vehicle Using Sloshing Filter (슬로싱 필터를 이용한 발사체의 최적 자세제어기 설계)

  • Kim, Dong-Hyun;Choi, Jae-Weon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.584-589
    • /
    • 2000
  • When the liquid tanks only partially filled and under translational acceleration, large quantities of liquid move uncontrollably inside the tanks and generate the liquid sloshing effect. Liquid sloshing effect could be a severe problem in launch vehicle stability and control if the liquid modes of motion couple significantly with the launch vehicle's normal modes of motion. Several methods have been employed to reduce the effect of sloshing, such as introducing baffles inside the tanks or dividing a large tank into a number of smaller ones. These techniques, although helpful in some cases, do not succeed in canceling the sloshing effects. In this paper, An attitude controller is designed for a launch vehicle with liquid sloshing effect. Both PD controller and sloshing filter are designed for the objective. PD gains and design parameters are determined by optimal algorithm. The performance of the attitude controller is evaluated via computer simulations.

  • PDF

Design of Tree Architecture of Fuzzy Controller based on Genetic Optimization

  • Han, Chang-Wook;Oh, Se-Jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.3
    • /
    • pp.250-254
    • /
    • 2010
  • As the number of input and fuzzy set of a fuzzy system increase, the size of the rule base increases exponentially and becomes unmanageable (curse of dimensionality). In this paper, tree architectures of fuzzy controller (TAFC) is proposed to overcome the curse of dimensionality problem occurring in the design of fuzzy controller. TAFC is constructed with the aid of AND and OR fuzzy neurons. TAFC can guarantee reduced size of rule base with reasonable performance. For the development of TAFC, genetic algorithm constructs the binary tree structure by optimally selecting the nodes and leaves, and then random signal-based learning further refines the binary connections (two-step optimization). An inverted pendulum system is considered to verify the effectiveness of the proposed method by simulation.

Design of Robust Controller for Uncertain Large-scale Systems with Time-delays (시간지연을 갖는 불확정성 대규모 시스템의 강인 제어기 설계)

  • Lee, Hui-Song;Kim, Jin-Hun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • In this paper, we consider to robust controller design problem for the linear large scale systems with the uncertainties and the time-delays. The considered time-delays are that exist in the state and the input of the subsystems and the interconnected subsystems. And the considered uncertainties are two general types that exist in the system, input and interconnected matrices. Based on the linear matrix inequality(LMI) and Lyapunov theorem, we present sufficient conditions for the existence of a controller that guarantees the asymptotic stability of systems regardless of the uncertainties and the time-delays. Also, the controller can be easily obtained by checking the feasibility of the LMI's. Finally, we show the usefulness of our results by an example.

  • PDF

Adaptive PID controller based on error self-recurrent neural networks (오차 자기순환 신경회로망에 기초한 적응 PID제어기)

  • Lee, Chang-Goo;Shin, Dong-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.209-214
    • /
    • 1998
  • In this paper, we are dealing with the problem of controlling unknown nonlinear dynamical system by using neural networks. A novel error self-recurrent(ESR) neural model is presented to perform black-box identification. Through the various outcome of the experiment, a new neural network is seen to be considerably faster than the BP algorithm and has advantages of being less affected by poor initial weights and learning rate. These characteristics make it flexible to design the controller in real-time based on neural networks model. In addition, we design an adaptive PID controller that Keyser suggested by using ESR neural networks, and present a method on the implementation of adaptive controller based on neural network for practical applications. We obtained good results in the case of robot manipulator experiment.

  • PDF

Simplifying method for the design of decentralized reduced order $H_{\infty}$ controllers (분산 저차 구조의 $H_{\infty}$ 제어기 설계를 위한 시스템의 간략화 방법)

  • Jo, Cheol-H.;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.933-935
    • /
    • 1996
  • The simplifying method for the design of decentralized reduced order $H_{\infty}$ controller is considered in this paper. When the controller is reconstructed for the original system, the decentralized condition of the controller for the transformed system is generally destroyed with older simplifying method. In designing the decentralized controller, direct output feedthrough terms give some difficulties by using other station's input information. We proposed a new solution for this problem.

  • PDF