• Title/Summary/Keyword: controlled switching

Search Result 626, Processing Time 0.036 seconds

A Study on Parallel Operation of PWM Converter for Auxiliary Power Supply of High Speed Train (고속전철 보조전원장치용 PWM 컨버터의 병렬운전에 관한 연구)

  • Kim, Yeon-Chung;O, Geun-U;Won, Chung-Yeon;Choe, Jong-Muk;Gi, Sang-U
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.64-72
    • /
    • 2000
  • This paper deals with the parallel operation of two PWM converters for auxiliary block of high speed train. The parallel operation of AC/DC PWM converter controlled by 3-level PWM switching method to operate switching devices to realize a high power factor and reduce the primary side of the transformer current harmonics is proposed. In this paper, it is presented the phase shift technique between two converters switching phase, solution to eliminate the coupling effects due to the transformer and zero crossing detection method for synchronized with the source and controller. Experimental results for laboratory system with TMS320C31 microprocessor and 10[kVA]PWM converter confirm the validity of the proposed algorithm.

  • PDF

Low-area Dual mode DC-DC Buck Converter with IC Protection Circuit (IC 보호회로를 갖는 저면적 Dual mode DC-DC Buck Converter)

  • Lee, Joo-Young
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.586-592
    • /
    • 2014
  • In this paper, high efficiency power management IC(PMIC) with DT-CMOS(Dynamic threshold voltage Complementary MOSFET) switching device is presented. PMIC is controlled PWM control method in order to have high power efficiency at high current level. The DT-CMOS switch with low on-resistance is designed to decrease conduction loss. The control parts in Buck converter, that is, PWM control circuit consist of a saw-tooth generator, a band-gap reference(BGR) circuit, an error amplifier, comparator circuit, compensation circuit, and control block. The saw-tooth generator is made to have 1.2MHz oscillation frequency and full range of output swing from supply voltage(3.3V) to ground. The comparator is designed with two stage OP amplifier. And the error amplifier has 70dB DC gain and $64^{\circ}$ phase margin. DC-DC converter, based on current mode PWM control circuits and low on-resistance switching device, achieved the high efficiency nearly 96% at 100mA output current. And Buck converter is designed along LDO in standby mode which fewer than 1mA for high efficiency. Also, this paper proposes two protection circuit in order to ensure the reliability.

Selective Harmonic Elimination in Multi-level Inverters with Series-Connected Transformers with Equal Power Ratings

  • Moussa, Mona Fouad;Dessouky, Yasser Gaber
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.464-472
    • /
    • 2016
  • This study applies the selective harmonic elimination (SHE) technique to design and operate a regulated AC/DC/AC power supply suitable for maritime military applications and underground trains. The input is a single 50/60 Hz AC voltage, and the output is a 400 Hz regulated voltage. The switching angles for a multi-level inverter and transformer turns ratio are determined to operate with special connected transformers with equal power ratings and produce an almost sinusoidal current. As a result of its capability of directly controlling harmonics, the SHE technique is applicable to apparatus with congenital immunity to specific harmonics, such as series-connected transformers, which are specially designed to equally share the total load power. In the present work, a single-phase 50/60 Hz input source is rectified via a semi-controlled bridge rectifier to control DC voltage levels and thereby regulate the output load voltage at a constant level. The DC-rectified voltage then supplies six single-phase quazi-square H-bridge inverters, each of which supplies the primary of a single-phase transformer. The secondaries of the six transformers are connected in series. Through off-line calculation, the switching angles of the six inverters and the turns ratios of the six transformers are designed to ensure equal power distribution for the transformers. The SHE technique is also employed to eliminate the higher-order harmonics of the output voltage. A digital implementation is carried out to determine the switching angles. Theoretical results are demonstrated, and a scaled-down experimental 600 VA prototype is built to verify the validity of the proposed system.

Improved switching method for sensorless BLDC motor drive (Sensorless BLDC 전동기 구동을 위한 개선된 스위칭 방법)

  • Lee, Ho-Hyoung;Cho, Whang;Lee, Key-Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.164-170
    • /
    • 2010
  • In brushless DC motor, current flow should be controlled such that only properly selected 2 out of 3 phases carry current depending on the position of rotor. In order to detect position of rotor, hole sensor, encoder, optical position-detecting sensor, and magnetic position-detecting sensor are frequently employed. These sensors not only often cause malfunction in low and high temperature but they also have disadvantage of increasing cost and size of an motor system. To reduce the cost and size and to increase the robustness of the motor system, recently researches on sensorless motor dirve are very active. This paper proposes a novel unipolar PWM switching method that can improve the control problem caused by the difficulty of detecting zero crossing point at high revolution speed by minimizing the switching noise while increasing the lifespan of the drive system.

Effects of Shape Anisotropy on Memory Characteristics of NiFe/Co/Cu/Co Spin Valve Memory Cells (NiFe/Co/Cu/Co 스핀밸브 자기저항 메모리 셀에서 형상자기이방성이 메모리 특성에 미치는 영향)

  • 김형준;조권구;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.301-305
    • /
    • 1999
  • NiFe(60$\AA$)/Co(5$\AA$)/Cu(60$\AA$)/Co(30$\AA$) spin valve thin films were patterned into magnetoresistive random access memory (MRAM) cells by a conventional optical lithography process and their output and switching properties were characterized with respect to the cell size and geometry. When 1 mA of constant sense current was applied to the cells, a few or a few tens of mV of output voltage was measured within about 30 Oe of external magnetic field, which is an adequate output property for the commercializing of competitive MRAM devices. In order to resolve the problem of increase in the switching thresholds of magnetic layers with the downsizing of MRAM cells, a new approach using the controlled shape anisotropy was suggested and interpreted by a simple calculation of anisotropy energies of magnetic layers consisting of the cells. This concept gave a reduced switching threshold in NiFe(60$\AA$)/Co(5$\AA$) layer consisting of the patterned cells from about 15 Oe to 5 Oe and it was thought that this concept would be much helpful for the realization of competitive MRAM devices.

  • PDF

A 4×4 Multiport Amplifier System with Reconfigurable Switching Matrices and Error Calibration (재구성 스위칭 매트릭스와 에러 보정회로를 포함한 4×4 다중 포트 증폭 시스템)

  • Lee, Han Lim;Park, Dong-Hoon;Lee, Won-Seok;Khang, Seung-Tae;Lee, Moon-Que;Yu, Jong-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.637-645
    • /
    • 2014
  • This paper presents a new $4{\times}4$ multi-port amplifier(MPA) structure using reconfigurable switching matrices as input and output hybrid matrices(IHM, OHM), and phase/amplitude error calibration circuits. According to the mode selection of the switches, output power can be flexibly and effectively managed since the number of PA's to be used and the number of output port to distribute/combine amplified signals can be controlled. In addition, the proposed structure contains the phase and amplitude error calibration block that helps produce identical amplitudes and desired phase differences to the $4{\times}4$ OHM, resulting in optimizing the port-to-port isolation of the MPA system.

A Study on the Integrated Communication Systems for a Remote Control of Radio Communication Equipments (무선통신장치의 원격제어를 위한 통합통신 시스템에 관한 연구)

  • 조학현;김기문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.692-698
    • /
    • 2001
  • The radio communications by SSB and VHF transceivers are still used very efficiently in coast stations and military base stations. The communication system by the conventional SSB and VHF transceivers between a coast station and a terminal is an one-to-one system. In this dissertation, however, the conventional one-to-one system is expanded to one-to-multiple systems. Then, frequencies can be used effectively for distress, urgency, safety traffic, and military communications. An ICS has been proposed and added, in this dissertation, to the conventional SSB and VHF communication systems, which can realize one-to- several terminal communications. The line switching system by the ICS is to be remote-controlled by ASK modulated PTT signals and audio signals. An ICS can change a connection between terminal and transceiver through a circuit switching system at any time. For this purpose, the author has researched and developed a ASK transmission system, ICS system, control algorithm, multiprocessor system, and moni-toring system. As a conclusion, the developed line switching control systems and equipments can be used effectively for maritime communication, military communication, fishery communication, etc.

  • PDF

Development of Eco-Friendly Ag Embedded Peroxo Titanium Complex Solution Based Thin Film and Electrical Behaviors of Res is tive Random Access Memory

  • Won Jin Kim;Jinho Lee;Ryun Na Kim;Donghee Lee;Woo-Byoung Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.152-162
    • /
    • 2024
  • In this study, we introduce a novel TiN/Ag embedded TiO2/FTO resistive random-access memory (RRAM) device. This distinctive device was fabricated using an environmentally sustainable, solution-based thin film manufacturing process. Utilizing the peroxo titanium complex (PTC) method, we successfully incorporated Ag precursors into the device architecture, markedly enhancing its performance. This innovative approach effectively mitigates the random filament formation typically observed in RRAM devices, and leverages the seed effect to guide filament growth. As a result, the device demonstrates switching behavior at substantially reduced voltage and current levels, heralding a new era of low-power RRAM operation. The changes occurring within the insulator depending on Ag contents were confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Additionally, we confirmed the correlation between Ag and oxygen vacancies (Vo). The current-voltage (I-V) curves obtained suggest that as the Ag content increases there is a change in the operating mechanism, from the space charge limited conduction (SCLC) model to ionic conduction mechanism. We propose a new filament model based on changes in filament configuration and the change in conduction mechanisms. Further, we propose a novel filament model that encapsulates this shift in conduction behavior. This model illustrates how introducing Ag alters the filament configuration within the device, leading to a more efficient and controlled resistive switching process.

A Low Area and High Efficiency SMPS with a PWM Generator Based on a Pseudo Relaxation-Oscillating Technique (Pseudo Relaxation-Oscillating 기법의 PWM 발생기를 이용한 저면적, 고효율 SMPS)

  • Lim, Ji-Hoon;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.70-77
    • /
    • 2013
  • We suggest a low area and high efficiency switched-mode power supply (SMPS) with a pulse width modulation (PWM) generator based on a pseudo relaxation-oscillating technique. In the proposed circuit, the PWM duty ratio is determined by the voltage slope control of an internal capacitor according to amount of charging current in a PWM generator. Compared to conventional SMPSs, the proposed control method consists of a simple structure without the filter circuits needed for an analog-controlled SMPS or the digital compensator used by a digitally-controlled SMPS. The proposed circuit is able to operate at switching frequency of 1MHz~10MHz, as this frequency can be controlled from the selection of one of the internal capacitors in a PWM generator. The maximum current of the core circuit is 2.7 mA, and the total current of the entire circuit including output buffer driver is 15 mA at 10 MHz switching frequency. The proposed SMPS has a simulated maximum ripple voltage of 7mV. In this paper, to verify the operation of the proposed circuit, we performed simulation using Dongbu Hitek BCD $0.35{\mu}m$ technology and measured the proposed circuit.

Dynamic Speed Control of a Unicycle Robot (외바퀴 로봇의 동적 속도 제어)

  • Han, In-Woo;Hwang, Jong-Myung;Han, Seong-Ik;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents a new control algorithm for dynamic control of a unicycle robot. The unicycle robot motion consists of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel pendulum. The unicycle robot doesn't have any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Euler-Lagrange equation is applied to derive the dynamic equations of the unicycle robot to implement the dynamic speed control of the unicycle robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and LQ regulator are utilized to guarantee the stability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based sliding mode controller has been adopted to minimize the chattering by the switching function. The LQR controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the wheel. The control performance of the two control systems form a single dynamic model has been demonstrated by the real experiments.