• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.026 seconds

The Study of Dynamic Safety Using M&S for Integrated Electro-mechanical Actuator Installed on Aircraft (M&S를 이용한 항공기용 통합형 전기식 구동장치의 동적 안전성 연구)

  • Lee, Sock-Kyu;Lee, Byoung-Ho;Lee, Jeung;Kang, Dong-Seok;Choi, Kwan-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.2
    • /
    • pp.108-115
    • /
    • 2015
  • Electro-mechanical actuator installed on aircraft consists of a decelerator which magnifies the torque in order to rotate an axis connected with aircraft control surface, a control section which controls the motor assembly through receiving orders from cockpit and a motor assembly which rotates the decelerator. Electro-mechanical actuator controls aircraft altitude, position, landing, takeoff, etc. It is an important part of a aircraft. Aircraft maneuvering causes vibrations to electro-mechanical actuator. Vibrations may result in structural fatigue. For that reason, it is necessary to analyze the system structural safety. In order to analyze the system structural safety. It is needed reasonable finite element model and structural response stress closed to real value. In this paper, analytic model is derived by using the simplified finite element model, and damping ratio which is closely related to response stress is derived by using modal test. So, we developed analytic model in less than 10 % error rate, compared with modal test. Vibration response stress close to real value was estimated from analytic model modified with modal experimental damping ratio. Estimation method for damping ratio with empirical formula was suggested partly. Finally, It was proved that electro-mechanical actuator had reasonable structure margin of safety at environmental random $3{\sigma}$ stress during life cycle.

Feasibility Study of MR Elastomer-based Base Isolation System (MR 엘라스토머를 이용한 기초격리 시스템에 대한 타당성 연구)

  • Jang, Dong-Doo;Usman, Muhammad;Sung, Seung-Hoon;Moon, Yeong-Jong;Jung, Hyung-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.597-605
    • /
    • 2008
  • The feasibility study of a newly proposed smart base isolation system employing magneto-rheological elastomers(MREs) has been carried out. MREs belong to a class of smart materials whose elastic modulus or stiffness can be adjusted by varying the magnitude of the magnetic field. The base isolation systems are considered as one of the most effective devices for vibration mitigation of civil engineering structures such as bridges and buildings in the event of earthquakes. The proposed base isolation system strives to enhance the performance of the conventional base isolation system by improving the robustness of the system wide stiffness range controllable of MREs, which improves the adaptability and helps in better vibration control. To validate the effectiveness of the MRE-based isolation system, an extensive numerical simulation study has been performed using both single-story and five-story building structures employing base isolated devices under several historical earthquake excitations. The results show that the proposed system outperformed the conventional system in reducing the responses of the structure in all the seismic excitations considered in the study.

Seismic response control of transmission tower-line system using SMA-based TMD

  • Tian, Li;Zhou, Mengyao;Qiu, Canxing;Pan, Haiyang;Rong, Kunjie
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.129-143
    • /
    • 2020
  • This study proposes a new shape memory alloy-tuned mass damper (SMA-TMD) and investigates the effectiveness of this damper in reducing and controlling the vibrations of a transmission tower-line system under various seismic excitations. Based on a practical transmission line system and considering the geometric nonlinearity of this system, the finite element (FE) software ANSYS is used to create an FE model of the transmission tower-line system and simulate the proposed SMA-TMD. Additionally, the parameters of the SMA springs are optimized. The effectiveness of a conventional TMD and the proposed SMA-TMD in reducing and controlling the vibrations of the transmission tower-line system under seismic excitations is investigated. Moreover, the effects of the ground motion intensity and frequency ratio on the reduction ratio (η) of the SMA-TMD are studied. The vibration reduction effect of the SMA-TMD under various seismic excitations is superior to that of the conventional TMD. Changes in the ground motion intensity and frequency ratio have a significant impact on the η of the SMA-TMD. As the ground motion intensity and frequency ratio increase, the η values of the SMA-TMD first increase and then decrease. Studying the vibration reduction effects of the SMA-TMD can provide a reference for the practical engineering application of this damper.

Field Demonstration of Pre-Fracturing for Controlling Noise and Vibration (선행이완발파의 진동 및 소음 제어 효과 검증을 위한 발파 시험 시공)

  • Juhyi Yim;Bong Cheol Lee;Jae Hoon Jung;Han Byul Kang;Jae Won Lee;Young Jin Shin
    • Explosives and Blasting
    • /
    • v.42 no.3
    • /
    • pp.49-57
    • /
    • 2024
  • Pre-fracturing is the blasting method to weaken the rock mass prior to the main excavation. This study aims to evaluate the effectiveness of pre-fracturing by using half the explosive charge typically employed in conventional blasting designs. Field tests conducted at a quarry in Gapyeong showed that noise levels were reduced by 2.7 dB due to the decreased amount of explosive per blast hole, and vibration levels were controlled to the precision vibration control blasting standard. Rock weakening was confirmed through induced cracks observed on the surface and core samples, and it was noted that the weakening effect of the blasting decreased as the burden increased. The vibrations from conventional blasting were found to be lower than those from pre-fracturing. This was attributed more to the geological conditions, such as joints, rather than the blasting design factors like explosive amount, burden, and the number of free face.

Design Parameter of a New Type Bi-directional Damper Using a Tuned Liquid Column Damper and a Tuned Sloshing Damper (TLCD와 TSD를 이용한 새로운 형태의 양방향 감쇠기 설계변수)

  • Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.850-856
    • /
    • 2009
  • A new type bi-directional damper using a tuned liquid column damper(TLCD) and a tuned sloshing damper(TSD) is introduced in this study. Two dampers are usually needed to reduce wind-induced responses of tall buildings since they are along and across wind ones. The proposed damper has the advantage of controlling both responses with one damper. One of objectives of this study is to derive analytical dynamics to investigate coupled effects due to TLCD and TSD. Another objective is to address the effect of coupled control force due to TLCD and TSD on the dynamic characteristic of the damper based on analytical dynamics. Shaking table test is undertaken to experimentally grasp dynamic characteristics of the damper under white noise excitation. Its dynamic characteristic is expressed by the transfer function from the shaking table acceleration to the control force generated from the damper. Finally, its design parameters are identified based on the coupled dynamics, which include the mass ratio of horizontal liquid column to total liquid for a TLCD, the participation factor of the fundamental liquid sloshing for a TSD and damping ratio for both cases.

A Robust Track-following Control with Multiple Constraints Using Genetic Algorithm (유전자 알고리즘을 이용한 다중 제한 조건을 만족하는 강인 트랙 추종 제어)

  • Lee, Moon-Noh;Lee, Hong-Kyu;Jin, Kyoung-Bog
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • This paper presents a design method of a robust tracking controller satisfying multiple constraints using genetic algorithm. A robust $H_{\infty}$ constraint with loop shaping is used to address disturbance attenuation with error limits and a loop gain constraint is considered so as not to enlarge the tracking loop gain and bandwidth unnecessarily. The robust $H_{\infty}$ constraint is expressed by a matrix inequality and the loop gain constraint is considered as an objective function so that genetic algorithm can be applied. Finally, a robust tracking controller can be obtained by integrating genetic algorithm with LMI approach. The proposed tracking controller design method is applied to the track-following system of an optical DVD recording drive and is evaluated through the experimental results.

A Study on the Feed Rate Optimization of a Ball Screw Driven Machine Tool Feed Slide for Minimum Vibrations

  • Choi, Yong-Hyu;Choi, Hoon-Ki;Kim, Soo-Tae;Choi, Eung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1028-1032
    • /
    • 2004
  • In order to prevent machine tool feed slide system from transient vibrations during operations, machine tool designers usually adopt some typical design solutions; box-in-box typed feed slides, optimizing moving body for minimum weight and dynamic compliance, and so on. Despite all efforts for optimizing design, a feed drive system may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slides system. This paper presents a feed rate optimization of a ball screw driven machine tool feed slide system for its minimum vibration. Firstly, a ball screw feed drive system was mathematically modeled as a 6-degree-of-freedom lumped parameter system. Next, a feed rate optimization of the system was carried out for minimum vibrations. The main idea of the feed rate optimization is to find out the most appropriate smooth acceleration profile with jerk continuity. A genetic algorithm was used in this feed rate optimization

  • PDF

Ride Comfort Analysis of Passenger Vehicle Featuring ER Damper with Different Tire Pressure (타이어 공기압에 따른 ER 댐퍼 장착 승용차의 승차감분석)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.210-216
    • /
    • 2016
  • In this work, performance analysis to improve ride comfort of an ER (electrorheological) fluid damper for a mid-sized passenger vehicle in terms of tire pressure is presented. An ER damper by considering specification for a mid-sized commercial passenger vehicle is proposed and mechanically designed. After manufacturing and assembling the proposed ER damper with design parameters, their performance such as field-dependent damping forces are experimentally measured. A quarter-vehicle ER ECS (Electronic Control Suspension) system consisting of the ER damper, sprung mass, spring, sky-hook controller and tire is constructed to analysis the ride comfort performances. Vertical tire stiffness with different tire pressure is experimentally measured and investigated. In addition, ride comfort analysis such as vertical acceleration root mean square (RMS) of sprung mass is investigated under bump road using quarter-vehicle test equipment.

Extracting parameters of TMD and primary structure from the combined system responses

  • Wang, Jer-Fu;Lin, Chi-Chang
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.937-960
    • /
    • 2015
  • Tuned mass dampers (TMDs) have been a prevalent vibration control device for suppressing excessive vibration because of environmental loadings in contemporary tall buildings since the mid-1970s. A TMD must be tuned to the natural frequency of the primary structure to be effective. In practice, a TMD may be assembled in situ, simultaneously with the building construction. In such a situation, the respective dynamic properties of the TMD device and building cannot be identified to determine the tuning status of the TMD. For this purpose, a methodology was developed to obtain the parameters of the TMD and primary building on the basis of the eigenparameters of any two complex modes of the combined building-TMD system. The theory was derived in state-space to characterize the nonclassical damping feature of the system, and combined with a system identification technique to obtain the system eigenparameters using the acceleration measurements. The proposed procedure was first demonstrated using a numerical verification and then applied to real, experimental data of a large-scale building-TMD system. The results showed that the procedure is capable of identifying the respective parameters of the TMD and primary structure and is applicable in real implementations by using only the acceleration response measurements of the TMD and its located floor.

Design of Friction Dampers for Seismic Response Control of a SDOF Building (단자유도 건물의 지진응답제어를 위한 마찰감쇠기 설계)

  • Min, Kyung-Won;Seong, Ji-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Approximate analysis for a building installed with a friction damper is performed to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor(DMF). It is found out that DMF is dependent on friction force ratio and resonance frequency. Approximation of DMF and equivalent damping ratio of a friction damper is proposed with such assumption that the building with a friction damper shows harmonic steady-state response and narrow banded response behavior near resonance frequency. Linear transfer function from input external force to output building displacement is suggested from the simplified DMF equation. Root mean square of a building displacement is derived under earthquake-like random excitation. Finally, design procedure of a friction damper is proposed by finding friction force corresponding to target control ratio. Numerical analysis is carried out to verify the proposed design procedure.