• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.029 seconds

Flutter Control of a Lifting Surface via Visco-Hysteretic Vibration Absorbers

  • Lacarbonara, Walter;Cetraro, Marek
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.331-345
    • /
    • 2011
  • In this paper, a visco-hysteretic vibration absorber (VA) is proposed to increase the flutter speed of an airfoil and enhance damping in the pre- and post-flutter regimes. The passive system consists of a parallel arrangement of a dashpot and a rateindependent hysteretic element, represented by the Bouc-Wen differential model. The equations of motion are obtained and various tools of linear and nonlinear dynamics are employed to study the effects of the visco-hysteretic VA in the pre- and postflutter ranges.

Design of a TMD solution to mitigate wind-induced local vibrations in an existing timber footbridge

  • Bortoluzzi, Daniele;Casciati, Sara;Elia, Lorenzo;Faravelli, Lucia
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.459-478
    • /
    • 2015
  • The design of a passive control solution based on tuned mass dampers (TMD's) requires the estimation of the actual masses involved in the undesired vibration. This task may result not so straightforward as expected when the vibration resides in subsets of different structural components. This occurs, for instance, when the goal is to damp out vibrations on stays. The theoretical aspects are first discussed and a design process is formulated. For sake of exemplification, a multiple TMD's configurations is eventually conceived for an existing timber footbridge located in the municipality of Trasaghis (North-Eastern Italy). The bridge span is 83 m and the deck width is 3.82 m.

Simple Method of Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Supports (탄성지지된 3경간 연속 철근 콘크리트교의 간편한 진동해석)

  • 김덕현;박제선;김성환;이정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.349-356
    • /
    • 1998
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports in presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, In this paper. The influence of the modulus of the foundation and $D_{22}$, $D_{l2}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.d.

  • PDF

Application of Semi-active TMD for Vibration Control of Floor Slab (바닥판 구조물의 진동제어를 위한 준능동 TMD의 적용)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.607-612
    • /
    • 2007
  • A conventional passive TMD is only effective when it is tuned properly. In many practical applications, inevitable off-tuning of a TMD occurs because the mass in a building floor could change by moving furnishings, people gathering, etc. When TMDs are off tuned, TMDs their effectiveness is sharply reduced. This paper discusses the application of MR-TMD, semi-active damper, for the reduction of floor vibrations due to machine and human movements. Here, the groundhook and skyhook algorithm are applied to a single degree of freedom system representative of building floors. And displacement and velocity base control method are applied to reduce t100r vibration. The performance of the STMD is compared to that of the equivalent passive TMD. Comparison of the results demonstrates the efficiency and robustness of STMD with respect to equivalent TMD.

  • PDF

A Study of Real Time Mode Selecting Stochastic Controller (실시간 모드 선택 확률제어기에 관한 연구)

  • Kim, Yong-Kwan;Lee, Jong-Bok;Yeo, Woon-ju;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1054-1057
    • /
    • 2003
  • A Real Time Mode Selecting Stochastic Controller (RTMSSC) is developed as a new control strategy for a vibrating system under irregular disturbance. Displacement information and frequency characteristics obtained from me::id analysis of the system are used to design a Mode Selecting Controller. This Paper explains design technique of RTNSSC by applying it to the suppression of a flexible beam experiencing random vibration. The RTMSSC is designed by stochastic control from the modal information. The frequency information of the flexible system is utilized from the Mode Selecting Unit (MSU) based on a Fast-Fourier Transformation algorithm. The performance of the proposed technique, RTMSSC, is compared with that of Real Time Stochastic Controller developed recently, which show quite promising results.

  • PDF

Performance Evaluation of Commercial Vehicle with MR Seat Damper (MR 시트댐퍼를 장착한 상용차의 제어성능 평가)

  • 성금길;이호근;남무호;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1048-1053
    • /
    • 2003
  • This paper proposed a MR(Magneto-rheological) seat damper for a commercial vehicle. After formulating the governing equation of motion, an appropriate size of damper is designed and manufactured. Following the equation of fie d-dependent damping force characteristics, a semi-active seat suspension installed with the proposed MR-damper is constructed and its dynamic model id established, Subsequently, vibration isolation performance of the semi-active suspension system is demonstrated by incorporating with a MRAC(Model referenced adaptive control) fer the MR Seat Damper

  • PDF

Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Supports II

  • Kim, Duk-hyun;Han, Bong-Koo;Lee, Jung-Ho;Park, Ji-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.220-223
    • /
    • 2000
  • A method of calculating the natural frequency corresponding to the modes of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control The concrete slab is considered as a special orthotropic plate. The influence of the modulus of the foundation and $D_{22}$, $D_{12}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.

  • PDF

New Low Vibration Control Algorithm of Linear Pulse Motor Using Neuro-Fuzzy Theory (뉴로-퍼지이론을 이용한 리니어 펄스 모터의 새로운 저진동 정밀제어 알고리즘)

  • Bae Dong-Kwan;Park Kyung-Bin;Lee Yang-Guy;Kim Kwang-Heon;Park Hyun-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.18-21
    • /
    • 2001
  • This paper describes the method of vibration supprssion on a control algorithm using Neuro-Fuzzy Theory in Linear Pulse Motor (LPM). The total thrust force Is distorted by magnetic and coil flux, and we classify the harmonic parts of it. A modulated current from harmonic components of static thrust characteristics of LPM compensates with reference current to total thrust force. Low vibration is obtatained by the method of current compensation using ANFIS.

  • PDF

The Study on Dust, Noise, Vibration Characteristic by Using the Bottom Expansion Hole Method (저면확대면 홀 공법을 적용한 석재가공의 분진, 소음, 진동 특성 연구)

  • Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.65-66
    • /
    • 2021
  • Due to the inexperience of stone work and field workmanship, and the preference of simple construction, various problems such as unauthorized cutting of the touch and epoxy bonding are occurring. Therefore, the existing T-type hole construction method was developed to fundamentally control these attempts. As a result of comparison with the control panel method, vibration and noise were reduced by 2dB and 10dB, indicating an excellent effect. Particularly, dust was about 1/102~1/61 in individual values, and the average value was 1/80 (12.5%). The effect of preventing damage and environmental pollution is expected to be great.

  • PDF

Optimum LCVA for suppressing harmonic vibration of damped structures

  • Shum, K.M.;Xu, Y.L.;Leung, H.Y.
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • Explicit design formulae of liquid column vibration absorber (LCVA) for suppressing harmonic vibration of structures with small inherent structural damping are developed in this study. The developed design formulae are also applicable to the design of a tuned mass damper (TMD) and a tuned liquid column damper (TLCD) for damped structures under harmonic force excitation. The optimum parameters of LCVA for suppressing harmonic vibration of undamped structures are first derived. Numerical searching of the optimum parameters of tuned vibration absorber system for suppressing harmonic vibration of damped structure is conducted. Explicit formulae for these optimum parameters are then obtained by a series of curve fitting techniques. The analytical result shows that the control performance of TLCD for reducing harmonic vibration of undamped structure is always better than that of non-uniform LCVA for same mass and length ratios. As for the effects of structural damping on the optimum parameters, it is found that the optimum tuning ratio decreases and the optimum damping ratio increases as the structural damping is increased. Furthermore, the optimum head loss coefficient is inversely proportional to the amplitude of excitation force and increases as the structural damping is increased. Numerical verification of the developed explicit design expressions is also conducted and the developed expressions are demonstrated to be reasonably accurate for design purposes.