• Title/Summary/Keyword: control law design

Search Result 632, Processing Time 0.028 seconds

A Study on the Design of Intelligent Cruise Controller (지능 직선주행 제어기 설계에 관한 연구)

  • Rhee, Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.31-35
    • /
    • 2000
  • An nonlinear observer-based longitudinal control law for vehicles is presented in this paper. It is assumed that for vehicle i knows only the distance between vehicle i and the preceding vehicle, i-1. An nonlinear state observer for vehicle I is developed to estimate the velocity and acceleration of the preceding vehicle, i-1. The communication of the position, velocity, and acceleration information is not used in the proposed method. It will be shown by mathematical analysis that the longitudinal control of vehicle can be implemented without an communication of the informations. It will be proven that the observation errors of the nonlinear states converge to zero asymptotically. To show the effectiveness of the proposed method, the simulation results are presented for the longitudinal control of the vehicle.

  • PDF

Output-Feedback Input-Output Linearizing Controller for Nonlinear System Using Backward-Difference State Estimator (후방차분 상태 추정기를 이용한 비선형 계통의 입출력 궤환 선형화 제어기)

  • Kim, Seong-Hwan;Park, Jang-Hyun
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.72-78
    • /
    • 2005
  • This paper describes the design of a robust output-feedback controller for a single-input single-output nonlinear dynamical system with a full relative degree. While all the previous research works on the output-feedback control are based on dynamic observers, a new state estimator which uses the past values of the measurable system output is proposed. We name it backward-difference state estimator since the derivatives of the output are estimated simply by backward difference of the present and past values of the output. The disturbance generated due to the error between the estimated and real state variables is compensated using an additional robustifying control law whose gain is tuned adaptively. Overall control system guarantees that the tracking error is asymptotically convergent and that all signals involved are uniformly bounded. Theoretical results are illustrated through a simulation example of inverted pendulum.

  • PDF

Embedded Kalman Filter Design Using FPGA for Estimating Acceleration of a Time-Delayed Controller for a Robot Arm (로봇 팔의 시간지연제어기의 가속도 평가를 위한 Kalman 필터의 FPGA 임베디드 설계)

  • Jeon, Hyo-Won;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.148-154
    • /
    • 2009
  • In this paper, an embedded Kalman filter for a time-delayed controller is designed on an FPGA to estimate accelerations of the robot arm. When the time-delayed controller is used as a controller, the inertia estimation along with accelerations is needed to form the control law. Although the time-delayed controller is known to be robust to cancel out uncertainties in the nonlinear systems, performances are very much dependent upon estimating the acceleration term ${\ddot{q}}(t-{\lambda})$ along with inertia estimation ${\hat{D}}(t-{\lambda})$. Estimating accelerations using the finite difference method is quite simple, but the accuracy of estimation is poor specially when the robot moves slowly. To estimate accelerations more accurately, various filters such as the least square fit filter and the Kalman filter are introduced and implemented on an FPGA chip. Experimental studies of following the desired trajectory are conducted to show the performance of the controller. Performances of different filters are investigated experimentally and compared.

Hydraulic Control Characteristics of the ABS for an Automotive (자동차 미끄럼방지 제동장치의 유압 제어 특성)

  • Kim, Byeong-Woo;Park, Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.10-17
    • /
    • 2007
  • For the purpose of optimal control of anti-lock brake system, precise dynamic characteristics analysis of the hydraulic modulator, especially solenoid valve is necessary. However, most of researches so law have dealt with dynamic characteristic analysis of valve itself and the results have been restrictive to apply on the actual ABS modulator, where hydraulic pressure is acting. In this study, mathematical modeling and experimental analysis were executed in order to evaluate the valve dynamic characteristics when the hydraulic pressure applied. High pressure on the master cylinder effects on the valve dynamic characteristics have been analyzed quantitatively and performance improvement methods have been suggested varying the design factor. Consequently, results of solenoid valve dynamic characteristics analysis derived in the study can be utilized criteria for the optimal control of anti-lock brake system.

  • PDF

Factors Influencing Online Shopping Intention: An Empirical Study in Vietnam

  • HA, Ngoc Thang;NGUYEN, Thi Lien Huong;PHAM, Thanh Van;NGUYEN, Thi Hong Tham
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.1257-1266
    • /
    • 2021
  • The study examines factors that influence shopping intention of online consumers in Vietnam. Studied factors include consumers' attitude, subjective norms, perception of behavioral control, perception of usefulness, perceived risks and trust. The expansion of Theory of Planned Behavior (TPB) and Technology Acceptance Model (TAM) are used as basic theories. We have surveyed people who have experiences on online shopping. There are 836 selected questionnaires that are qualified for data processing. The collected data are analyzed through a process which starts from scale reliability test to exploratory factor analysis (EFA), correlation analysis and regression analysis. The results show that shopping intention of online consumers are positively affected by their attitude, subjective norms, perception of behavioral control, perception of usefulness and trust. In contrast, online shopping intention is negatively affected by the perceived risks that online shopping could bring. Among those factors, the perception of risk is shown to have the strongest influence to online shopping intention. The findings of this study suggest that managers and retailers can apply cash-on-delivery method and design their website with user-friendly interface to enhance online shopping intention of consumers. The Government is also recommended to fulfill the law system to reduce customers' perception of financial risks.

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.

A Study on Aircraft Flight Stability of T-50 Control Surface Reconfiguration Mode in PA Configuration (T-50 착륙외장 형상에서 조종면 형상 재구성 모드의 항공기 비행)

  • Kim, Jong-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.93-100
    • /
    • 2006
  • Modern versions of supersonic jet fighter aircraft using a digital flight-by-wire flight control system design utilizes a control surface reconfiguration in order to guarantee the aircraft flight stability when a control surface is failed. The T-50 flight control laws are designed such that the surface reconfiguration mode controls the aircraft using non-failed control surfaces when one of the control surfaces is failed. In this paper, linear analysis and HQS(Handling Quality Simulator) pilot simulations are performed to analyze the flight stability and handling quality when the surface reconfiguration mode is engaged for aircraft landing configuration. It is found that the aircraft flight stability and handling quality is satisfied to level 1 requirements when the T-50 flight control law is changed to the surface reconfiguration mode.

A Study on Verification for the Design of Bio Safety Level 3 Laboratory by using Multi-zone Simulation (멀티죤 시뮬레이션을 이용한 생물안전 3등급(BSL3)시설의 설계 검증에 관한 연구)

  • Lee, Hyun-Woo;Choi, Sang-Gon;Hong, Jin-Kwan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.745-750
    • /
    • 2009
  • In Korea, since the implementation of the GMO Law, the intrest of biosafety level 3(BL3) lab. is increasing. In this study, using CONTAM which is applying multizone modelling, the multizone simulation for design verification of BL3 lab. was performed. In BL3 lab., because required air change rate is greater than general estimated air-conditioning load and it is difficult to maintain room pressure difference efficiently, to maintain pressure difference between laboratory rooms is important through sealing condition of doors and proper airflow control of laboratory rooms. In this study, about BL3 lab.(M. tuberculosis research lab.), the multizone simulation for four kind of biohazard scenarios was performed in the case of unexpected spread of contaminants in the laboratory room, anteroom, corridor and inside of BSC. Multizone simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.

  • PDF

A Study on Development of Design Program for PCV Valve (PCV 밸브의 설계 프로그램 개발에 관한 연구)

  • Lee, Jong-Hoon;Islam, Md. Tajul;Lee, Yeon-Won;Kim, Young-Duk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.228-232
    • /
    • 2005
  • Automobiles are very important as modern society is developed. Increase of the number of the automobiles cause environmental problem, that is, air pollution. So, many countries are adopting a environmental law. Automobile manufacturing companies have developing methods to prevent air pollution with increase of the efficiency of automotive engines. PCV(Positive Crankcase Ventilation) system which is one of them is made by the closed loop that consists of combustion chamber, crankcase, manifold suction tube and manifold. PCV valve is attached on manifold tube to control the flowrate of blowby gas. PCV valve is an important part in this system but it is difficult to design PCV valve which satisfies the required flowrate of blowby gas. In this study, our purpose is to help a PCV valve designer with the development of a design program. We used 4th order Runge-Kutta method and Bernoulli's equation to analyze the spool dynamic motion. By the comparison between our program and experiment, we think that a PCV designer can use our program in their work place.

  • PDF

A Study on Verification for the Design of Bio Safety Level 3 Laboratory by using Multi-zone Simulation (멀티죤 시뮬레이션을 이용한 생물안전 3등급(BSL3)시설의 설계 검증에 관한 연구)

  • Lee, Hyun-Woo;Choi, Sang-Gon;Hong, Jin-Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.671-677
    • /
    • 2009
  • In Korea, since the implementation of the LMO Law, the interest of biosafety level 3(BL3) lab. is increasing. In this study, using CONTAM which is applying multizone modelling, the multizone simulation for design verification of BL3 lab. is performed. In BL3 lab., because required air change rate is greater than general estimated air-conditioning load and it is difficult to maintain room pressure difference efficiently, to maintain pressure difference between laboratory rooms is important through sealing condition of doors and proper airflow control of laboratory rooms. In this study, about BL3 lab,(M. tuberculosis research lab.), the multizone simulation for four kind of biohazard scenarios is carried out in the case of unexpected spread of contaminants in the laboratory room, anteroom, corridor and inside of BSC. Multizone simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.