• Title/Summary/Keyword: control law design

Search Result 632, Processing Time 0.029 seconds

Robust Gain Scheduling Based on Fuzzy Logic Control and LMI Methods (퍼지논리제어와 LMI기법을 이용한 강인 게인 스케줄링)

  • Chi, Hyo-Seon;Koo, Kuen-Mo;Lee, Hungu;Tahk, Min-Jea;Hong, Sung-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1162-1170
    • /
    • 2001
  • This paper proposes a practical gain-scheduling control law considering robust stability and performance of Linear Parameter Varying(LPV) systems in the presence of nonlinearities and uncertainties. The proposed method introduces LMI-based pole placement synthesis and also associates with a recently developed fuzzy control system based on Takagei-Sugenos fuzzy model. The sufficient conditions for robust controller design of linearized local dynamics and robust stabilization of fuzzy control systems are reduced to a finite set of Linear Matrix inequalities(LMIs) and solved by using co-evolutionary algorithms. The proposed method is applied to the longitudinal acceleration control of high performance aircraft with linear and nonlinear simulations.

  • PDF

A Study on Phugoid Mode in Longitudinal Axis of T-50 (T-50 세로축 장주기 모드 운동 특성에 관한 연구)

  • Kim, Jong-Seop;Hwang, Byeong-Mun;Kim, Seong-Jun;Heo, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.25-32
    • /
    • 2006
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modern version supersonic jet fighter aircraft. The flight control system utilize RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 advanced trainer employs the RSS concept in order to improve the aerodynamic performance and the flight control law in order to guarantee aircraft stability. The longitudinal two modes are the short period with high frequency and the phugoid mode with low frequency. The design goals of longitudinal control laws is concerned with the short period damping and frequency optimization using lower order equivalent system and utilizing the requirement of MIL-F-8785C. Analysis of short period mode has been and continues to be performed This paper addresses the analysis of aircraft phugoid node characteristics such as damping, natural frequency, and analysis of aircraft pitch motion that impacted by angle of attack limiter and auto pitch attitude control law.

$H_\infty$ Controller Design for Discrete-time Linear Systems with Time-varying Delays in States using S-procedure (S-procedure를 이용한 상태에 시변 시간지연을 가지는 이산 선형 시스템에 대한 $H_\infty$ 제어기 설계)

  • Kim, Ki-Tae;Cho, Sang-Hyun;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • This paper deals with the H$_{\infty}$ control problems for discrete-time linear systems with time-varying delays in states. The existence condition and the design method of the H$_{\infty}$ state feedback controller are given. In this paper, the H$_{\infty}$ control law is assumed to be a memoryless state feedback, and the upper-bound of time-varying delay and S-procedure are used. Through some changes of variables and Schur complement, the obtained sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.

Design of Modal Transducer in 2D Structure Using Multi-Layered PVDF Films Based on Electrode Pattern Optimization (다층 압전 필름의 전극 패턴 최적화를 통한 2차원 구조물에서의 모달 변환기 구현)

  • 유정규;김지철;김승조
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.632-642
    • /
    • 1998
  • A method based on finite element discretization is developed for optimizing the polarization profile of PVDF film to create the modal transducer for specific modes. Using this concept, one can design the modal transducer in two-dimensional structure having arbitrary geometry and boundary conditions. As a practical means for implementing this polarization profile without repoling the PVDF film the polarization profile is approximated by optimizing electrode patterns, lamination angles, and poling directions of the multi-layered PVDF transducer. This corresponds to the approximation of a continuous function using discrete values. The electrode pattern of each PVDF layer is optimized by deciding the electrode of each finite element to be used or not. Genetic algorithm, suitable for discrete problems, is used as an optimization scheme. For the optimization of each layers lamination angle, the continuous lamination angle is encoded into discrete value using binary 5 bit string. For the experimental demonstration, a modal sensor for first and second modes of cantilevered composite plate is designed using two layers of PVDF films. The actuator is designed based on the criterion of minimizing the system energy in the control modes under a given initial condition. Experimental results show that the signals from residual modes are successfully reduced using the optimized multi-layered PVDF sensor. Using discrete LQG control law, the modal peaks of first and second modes are reduced in the amount of 12 dB and 4 dB, resepctively.

  • PDF

Design and Implementation of Remote Control System for Car Navigation (자동차 내비게이션 원격 제어 시스템의 설계 및 구현)

  • Shin, Yejin;Seol, Soonuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1695-1703
    • /
    • 2014
  • Manipulating a car navigation system while driving can lead to car accident due to loss of concentration. This will be more serious for elders or beginner drivers. Recently, a new Road Traffic Law in Korea prohibits drivers from watching or operating any video displaying devices. So the car navigation system came hard to use. In order to solve the issue we design and implement a novel system where a remote person can control the car navigation system on behalf of the driver. In the proposed system, we suggest to utilize the driver's smartphone for allowing sharing the Internet connection of the phone with the navigation system. The required smartphone application and the server will also be designed and implemented.

A digital Controller Design to Improve Steady-State characteristics (전상상태 특성을 개선한 디지털 제어기 설계)

  • Kim, Yeong-Gil;Park, Mi-Yong;Lee, Sang-Bae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.6
    • /
    • pp.1-6
    • /
    • 1985
  • The reference input is one of causes having an effect upon the steady-state error. This paper dcscribes a design method of a digital controller to remove the stcadyftate error caused by the reference input. According to the types of the reference input, new system equations to remove the reference input term from controlled system equations are derived first. And, using the optimal control theory the control law is obtained to minimize the output of the new system. Based on the state-space approach, the proposed control algo-rithm can be applied to time-invariant linear systems including the unstable systems.

  • PDF

Associations between Psychological Distress and Body Mass Index among Law Enforcement Officers: The National Health Interview Survey 2004-2010

  • Gu, Ja K.;Charles, Luenda E.;Burchfiel, Cecil M.;Andrew, Michael E.;Ma, Claudia;Bang, Ki Moon;Violanti, John M.
    • Safety and Health at Work
    • /
    • v.4 no.1
    • /
    • pp.52-62
    • /
    • 2013
  • Objectives: To investigate the association between psychological distress and obesity among law enforcement officers (LEOs) in the United States. Methods: Self-reported data on psychological distress based on six key questions were obtained from LEOs who participated in the National Health Interview Survey (2004-2010). We used Prochaska's cut-point of a Kessler 6 score ${\geq}5$ for moderate/high mental distress in our analysis. Mean levels of body mass index (BMI) were compared across three levels of psychological distress. Results: The average age of LEOs (n = 929) was 39.3 years; 25% were female. Overall, 8.1% of LEOs had moderate or high psychological distress; 37.5% were obese (BMI ${\geq}30$). Mean BMI increased with increasing psychological distress (no distress, BMI = $27.2kg/m^2$; mild distress, $27.6kg/m^2$; and moderate/high distress, $33.1kg/m^2$; p = 0.016) after adjustment for age, race, income, and education level among female officers only. Physical activity modified the association between psychological distress and BMI but only among male LEOs (interaction p = 0.002). Among male LEOs reporting low physical activity, psychological distress was positively associated with BMI ($30.3kg/m^2$ for no distress, 30.7 for mild distress, 31.8 for moderate/high distress; p = 0.179) after adjustment, but not significantly. This association was not significant among males reporting high physical activity. Conclusion: Mean BMI significantly increased as psychological distress increased among female LEOs. A longitudinal study design may reveal the directionality of this association as well as the potential role that physical activity might play in this association.

Adaptive Fuzzy Sliding-Mode Control of Nonlinear System (비선형 시스템의 적응 퍼지 슬라이딩 모드 제어)

  • Kim, Do-Woo;Yang, Hai-Won;Cho, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.689-693
    • /
    • 2000
  • In this paper, we proposed a decoupled adaptive fuzzy sliding-mode control scheme in designing the SMC of a class of fourth-order nonlinear systems. These systems are decoupled the whole system into two second-order systems such that each subsystem has a separate control target expressed in terms of a sliding surface. Then, information from the secondary target conditions the main target, which, in turn, generates a control action to make both subsystem move toward their sliding surface. respectively, and Two sets of fuzzy rule bases are utilized to represent the equivalent control input with unknown system functions of the main target, The membership functions of the THEN-part. which is used to construct a suitable equivalent control of SMC. are changed according to adaptive law, Under this design scheme, we not only maintain the distribution of membership functions over state space but also reduce considerably computing time, we apply the decoupled adaptive sliding-mode control to control a nonlinear inverted pendulum system and confirms the validity of the proposed approach.

  • PDF

Design and Experimental Validation of a Digital Predictive Controller for Variable-Speed Wind Turbine Systems

  • Babes, Badreddine;Rahmani, Lazhar;Chaoui, Abdelmadjid;Hamouda, Noureddine
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.232-241
    • /
    • 2017
  • Advanced control algorithms must be used to make wind power generation truly cost effective and reliable. In this study, we develop a new and simple control scheme that employs model predictive control (MPC), which is used in permanent magnet synchronous generators and grid-connected inverters. The proposed control law is based on two points, namely, MPC-based torque-current control loop is used for the generator-side converter to reach the maximum power point of the wind turbine, and MPC-based direct power control loop is used for the grid-side converter to satisfy the grid code and help improve system stability. Moreover, a simple prediction scheme is developed for the direct-drive wind energy conversion system (WECS) to reduce the computation burden for real-time applications. A small-scale WECS laboratory prototype is built and evaluated to verify the validity of the developed control methods. Acceptable results are obtained from the real-time implementation of the proposed MPC methods for WECS.

The Design of Sliding Mode Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.506-506
    • /
    • 2000
  • To improve control performance of a non-linear system, many other researches have used the sliding mode control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However. this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network generates the control input for compensating unmodeled dynamics terms and disturbance. And, the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors to converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluating control performance of the proposed approach. tracking control simulation is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF