• 제목/요약/키워드: control law design

Search Result 632, Processing Time 0.036 seconds

Iterative learning control of robot manipulators (로봇 매니퓰레이터의 반복 학습 제어)

  • 문정호;도태용;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.470-473
    • /
    • 1996
  • This paper presents an iterative learning control scheme for industrial manipulators. Based upon the frequency-domain analysis, the input update law of the learning controller is given together with a sufficient condition for the convergence of the iterative process in the frequency domain. The proposed learning control scheme is structurally simple and computationally efficient since it is independent joint control depending only on locally measured variables and it does not involve the computation of complicated nonlinear manipulator dynamics. Moreover, it is capable of canceling the unmodeled dynamics of the manipulator without even the parametric model. Several important aspects of the learning scheme inherent in the frequency-domain design are discussed and the control performance is demonstrated through computer simulations.

  • PDF

Sliding Mode Control with Uncertainty Adaptation for Uncertain Input-Delay Systems (시간지연 시스템에서의 불확실성 추정을 갖는 슬라이딩 모드제어)

  • Roh, Young-Hoon;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.963-967
    • /
    • 2000
  • This paper deals with a sliding mode control with uncertainty adaptation for the robust stabilization of input-delay systems with unknown uncertainties. A sliding surface including a state predictor is employed to compensate for the effect of the input delay. The proposed method does not need a priori knowledge of upper bounds on the norm of uncertainties, but estimates those upper bounds by adaptation laws based on the sliding surface. Then, a robust control law with the uncertainty adaptation is derived to ensure the existence of the sliding mode. A numerical example is given to illustrate the design procedure.

  • PDF

Design of Lateral Controller for Automatic Valet Parking and Its Performance Analysis with Respect to Vehicle Types (자동 발렛 파킹을 위한 횡방향 제어기 설계 및 차종변화에 대한 제어 성능 분석)

  • Choi, Heejae;Song, Bongsob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1051-1058
    • /
    • 2012
  • The unified lateral control algorithm for automatic valet parking for various types of vehicles is presented and its feasibility is shown experimentally via field tests for the given parking scenario. First, a trajectory generation algorithm for forward driving and backward multi-step parking maneuvers is developed. Then, with consideration of different types of vehicles and operating conditions, a kinematic vehicle model is used and validated using field test data. Using the nonlinear vehicle model, the lateral controller is designed based on dynamic surface control. Finally the proposed lateral control law is validated via hardware-in-the-loop simulations for different types of vehicles and experimentally using a test vehicle through field tests.

Study on Robust Control for Proportional Pressure Control Valve with MRC (MRC를 이용한 비례압력제어밸브의 강인한 제어에 관한 연구)

  • Yun, So-Nam;Jeong, Hwang-Hun;Lee, Ill-Young
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2013
  • The proportional pressure control valve that was used to relief valve has different dynamic characteristics on each case. Because this valve has different assembling or processing error and environmental condition. However, a customer who used the relief valve wants to have a steadily performance even if the dynamic characteristics of valve was changed. For this reason, the manufacturer try to make the robust controller that has simple structure. This paper concerns about the design of robust controller that didn't affected by plant parameter's changing. The control strategy is a model reference control that conducted by on line identification problem, gradient method and Lyapunov equation. This adaptvie control law's validity that this paper deal with was confirmed by an results of step response test or hysteresis test.

Receding horizon predictive controls and generalized predictive controls with their equivalance and stability

  • Kwon, Wook-Hyun;Lee, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.49-55
    • /
    • 1992
  • In this paper, we developed a Receding Horizon Predictive Control for Stochastic state space models(RHPCS). RHPCS was designed to minimize a quadratic cost function. RHPCS consists of Receding Horizon Tracking Control(RHTC) and a state observer. It was shown that RHPCS is equivalent to Generalized Predictive Control(GPC) when the underlying state space model is equivalent to the I/O model used in the design of GPC. The equivalence between GPC and RHPCS was shown through. the comparison of the transfer functions of the two controllers. RHPCS provides a time-invarient optimal control law for systems for which GPC can not be used. The stability properties of RHPCS was derived. From the GPC's equivalence to RHPCS, the stability properties of GPC were shown to be the same as those for RHTC.

  • PDF

Design of Vehicle Stability Control Algorithm Based on 3-DOF Vehicle Model (3자유도 차량모델 기반 차량 안정성 제어 알고리듬 설계)

  • Chung Taeyoung;Yi Kyongsu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 2005
  • This paper presents vehicle stability control algorithm based on 3-DOF vehicle model. The brake control inputs have been directly derived from the sliding control law based on a three degree of freedom plane vehicle model with differential braking. The simulation has performed using a full nonlinear 3-dimensional vehicle model and the performance of the controller has been compared to that of a direct yaw moment controller. Simulation results show that the proposed controller can provide a vehicle with better performance than conventional controller with respect to brake actuation without compromising stability at critical driving conditions.

Application of Optimum Control to 600 MWe Pressurized Water Reactor

  • Koh, Byung-Joon;Shin, Jae-In
    • Nuclear Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.59-64
    • /
    • 1971
  • This paper presents an approach to control that if a result of modern control theory, and is based on tile control philosophy of feeding back all tile state variable through constant gain frequency independent elements. The values of these elements or feedback coefficients are determined by equating like coefficients of the desired system transfer function to the transfer function of the system containing the unspecified coefficient s. This application of modern control law is a simple design method depending on feedingback all the system variables for reactor control and it is particuraly amenable to the control of Pressurized Water Reactor.

  • PDF

Robust Control for the System with Unmatched Uncertainty (입력정합조건을 만족하지 않는 시스템에 대한 강인 제어)

  • Jeon, Bo-Kyoung;Chang, Pyung-Huh;Park, Juyi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.95-101
    • /
    • 2001
  • Most robust control schemes for stabilizing the systems with uncertainties require that the systems are satisfied with matching conditions. This paper is proposed to robust control using the time delay estimation for the nonlinear single input systems not satisfying the matching conditions. Synthetic input concept is used to design the control law. The unmatched uncertainties considered in this paper are more general than other studies and they need not a special form or information about their bound. We applied the proposed method to a single pendulum with a motor system.

  • PDF

Fuzzy Sliding Mode Control for a Hydraulic Elevator Controlled by Inverter

  • Han, Gueon-Sang;Park, Jae-Sam;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1487-1490
    • /
    • 2002
  • In this paper, a design methodology of fuzzy sliding mode control scheme for a hydraulic elevator controlled by inverter is presented. The proposed scheme uses a fuzzy sliding mode controller(FSMC), which is designed based on the similarity between the fuzzy logic control(FLC) and the sliding mode control(SMC). The proposed method has advantages that the stability and the robustness of the FLC are proved and ensured by the sliding mode control law, and the computation burden could be reduced greatly. The validity and the effectiveness of the proposed control method have been shown through the real world industrial application results.

  • PDF

A Study on the Sway Suppression Control of Container Cranes (컨테이너 크레인의 흔들림 억제 제어에 관한 연구)

  • Baek, Woon-Bo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.109-115
    • /
    • 2012
  • In this paper, we consider the sway suppression control problem for container cranes with load hoisting. The proposed control law improves the positioning accuracy but also the sway suppression through fast stabilization of the under-actuated sway dynamics, which is based on a class of feedback linearizing control incorporated with an additional control including the sway angle and its rate as well as positioning errors and their rates. For the design of the additional control, a variable structure control with the proper sway damping and simple switching action is employed, thus preventing excessive overshoots of the trolley travelljng and effectively suppressing the residual sway of container arrived at the target position. Simulation results are provided to show effectiveness of the proposed controller in the presence of such uncertainties as winds and the variation of payload weights.