• Title/Summary/Keyword: control law design

Search Result 632, Processing Time 0.026 seconds

Adaptive nonsingular sliding mode based guidance law with terminal angular constraint

  • He, Shaoming;Lin, Defu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.146-152
    • /
    • 2014
  • In this paper, a new adaptive nonsingular terminal sliding mode control theory based impact angle guidance law for intercepting maneuvering targets was documented. In the design procedure, a new adaptive law for target acceleration bound estimation was presented, which allowed the proposed guidance law to be used without the requirement of the information on the target maneuvering profiles. With the aid of Lyapunov stability criteria, the finite-time convergent characteristics of the line-of-sight angle and its derivative were proven in theory. Numerical simulations were also performed under various conditions to demonstrate the effectiveness of the proposed guidance law.

Design of Augmented Guidance Law Considering Geometric Pursuit Angle

  • Kim, You-Dan;Kim, Ki-Seok;Moon, Gwan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.125.5-125
    • /
    • 2001
  • Until now, many guidance laws have been developed. They mainly used the classical tail-pursuit guidance method based on geometric angle information, the proportional navigation method based on the line of sight(LOS) rate, and the optimal guidance law based on optimal control theorem. In the augmented guidance law, target acceleration information and autopilot characteristics are added the guidance command. In this study, new guidance laws considering geometric angle are proposed. Two guidance laws are developed for the midcourse guidance law, and a guidance law is developed for the terminal guidance respectively. The proposed guidance laws utilize the LOS rate and the geometric angle information simultaneously. In the midcourse guidance, the guidance command is ...

  • PDF

Minimum Energy Control of an S-CVT Equipped Power Transmission

  • Kim, Jungyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.82-91
    • /
    • 2004
  • This article deals with a minimum energy control law of S-CVT connected to a dc motor. The S-CVT can smoothly transit between the forward, neutral, and reverse states without any brakes or clutches, and its compact and simple design and its relatively simple control make it particularly effective for mechanical systems in which excessively large torques are not required. And such an S-CVT equipped power transmission has the advantage of being able to operate the power sources in their regions of maximum efficiency, thereby improving the energy efficiency of the transmission system. The S-CVT was intended to primarily for use in small power capacity transmissions, thus a dc motor was considered here as the power source. We first review the structure and operating principles of the S-CVT, including experimental results of its performance. And then we describe a minimum energy control law of S-CVT connected to a do motor. To do this, we describe the results of an analysis of the dynamics of an S-CVT equipped power transmission and the power efficiency of a DC motor. The minimum energy control design is carried out via B-spline parameterization. And we show numerical results obtained from simulations illustrate the validity of our minimum energy control design, benchmarked with a computed torque control algorithm for S-CVT.

Robust Backstepping Design of Nonlinear Systems Using Adaptation Strategy for Uncertaninties (불확실성 적응기법을 이용한 비선형 시스템의 강인 백스테핑 설계)

  • Kim, Dong-Heon;Kim, Eung-Seok;Yang, Hae-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.605-613
    • /
    • 2001
  • In this paper, we design a robust adaptive controller for a nonlinear system with uncertainties to be rejected via disturbance adaptation law. The nonlinear system considered has unknown nonlinear functions being influenced by external disturbance. The upper bound of unknown nonlinear functions at each time is estimated by using a disturbance adaptation law. The estimated nonlinear functions are used to design a stabilizing function a control input. Tuning function is used to estimates unknown system parameter without overparametrization. A set-point regulation error converges to a residual set close to zero asymptotically. The effectiveness of the proposed controller is investigated by computer simulation.

  • PDF

Autopilot design using robust nonlinear dynamic inversion method (견실한 비선형 dynamic inversion 방법을 이용한 오토파일롯 설계)

  • 김승환;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1492-1495
    • /
    • 1996
  • In this paper, an approach to autopilot design based on the robust nonlinear dynamic inversion method is proposed. Both unknown parameters and uncertainty bounds are estimated and parameter estimates are used in the fast inversion. Furthermore, to get more robustness slow inversion is incorporated with MRAC(Model Reference Adaptive Control) and sliding mode control where the estimates of uncertainty bounds are used. The proposed method is applied to the pitch autopilot design of a missile system and excellent performance is shown via computer simulation.

  • PDF

Optimum design of a sliding mode control for seismic mitigation of structures equipped with active tuned mass dampers

  • Eliasi, Hussein;Yazdani, Hessam;Khatibinia, Mohsen;Mahmoudi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.633-645
    • /
    • 2022
  • The active tuned mass damper (ATMD) is an efficient and reliable structural control system for mitigating the dynamic response of structures. The inertial force that an ATMD exerts on a structure to attenuate its otherwise large kinetic energy and undesirable vibrations and displacements is proportional to its excursion. Achieving a balance between the inertial force and excursion requires a control law or feedback mechanism. This study presents a technique for the optimum design of a sliding mode controller (SMC) as the control law for ATMD-equipped structures subjected to earthquakes. The technique includes optimizing an SMC under an artificial earthquake followed by testing its performance under real earthquakes. The SMC of a real 11-story shear building is optimized to demonstrate the technique, and its performance in mitigating the displacements of the building under benchmark near- and far-fault earthquakes is compared against that of a few other techniques (proportional-integral-derivative [PID], linear-quadratic regulator [LQR], and fuzzy logic control [FLC]). Results indicate that the optimum SMC outperforms PID and LQR and exhibits performance comparable to that of FLC in reducing displacements.

Control Design for Flexible Joint Manipulators with Mismatched Uncertainty : Adaptive Robust Scheme

  • Kim, Dong-Hwa
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.32-43
    • /
    • 1999
  • Adaptive robust control scheme is introduced for flexible joint manipulator with nonlinearities and uncertainties. The system does not satisfy the matching condition due to insufficient actuators for each node. The control only relies on the assumption that the bound of uncertainty exists. Thus, the bounded value does not need to be known a prior. The control utilizes the update law by estimating the bound of the uncertainties. The control scheme uses the backstepping method and constructs a state transformation. Also, stability analysis is done for both transformed system and original system.

  • PDF

Dynamic modeling of supersonic engine for control law design considering the air disturbance (비행중 대기 외란을 고려한 초음속 엔진 제어용 모델링 기법 연구)

  • Park, Ik-Soo;Park, Jung-Woo;Tahk, Min-Jea;Kim, Sun-Kyeong;Kim, Sung-Jin;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.546-549
    • /
    • 2009
  • Dynamic model for supersonic engine is proposed to design control law. The model structure is constructed to capture the local characteristics of supersonic and subsonic flow by using conservation equations. To evaluate the stability of control law under the disturbances, the air turbulence model is incorporated with the engine model. The combined model shows analogous results compared to performance analysis model which is good coincidence with CFD results and disturbance effects.

  • PDF

Design of a Stable Adaptive Controllor in the Presence of Disturbance (외란 투입시 안정한 적응 제어기 설계)

  • 천희영;박귀태;박승엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.12
    • /
    • pp.573-578
    • /
    • 1986
  • The adaptive control of a plant in the presence of disturbance is considered. In sevral papers, it was shown that bounded disturbance made the basic adaptive scheme unstable. For achieving robust stability in adaptive control system in the presence of disturbance, the pureintegration in the adaptive law is limited by means of an additional feedback term. In this paper, the suggested adaptive control law has property that the output error converges to zero whether the disturbance exist or not, without the priori knowledge. The adaptive controller suggested assure the boundness of all signal in the overall system. Finally, computer simulation show the effectiveness of the suggested adaptive control law.

  • PDF

Control of nonlinear systems with mismatched uncertainties using an output feedback (출력피드백에 의한 비매칭 불확실성이 있는 비선형계의 제어)

  • Park, Chang-Yong;Sung, Yul-Wan;Kwon, Oh-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1188-1194
    • /
    • 1997
  • In this paper, we design output feedback nonlinear dynamic control law by using state feedback nonlinear dynamic compensator and PI observer and show that the controller can stabilize globally and asymptotically a class of nonlinear systems with mismatched uncertainties. We also show that it is possible for a nonlinear system to use the output of PI observer in place of state variables in case that the nonlinear dynamic control law is used, similarly as in the linear system. The effectiveness of the proposed control law is demonstrated by a numerical simulation.