• Title/Summary/Keyword: control Lyapunov function

Search Result 374, Processing Time 0.023 seconds

A DESIGN METHOD OF LYAPUNOV-STABLE MMG FUZZY CONTROLLER

  • Hara, Fumio;Yamamoto, Kazuomi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.873-876
    • /
    • 1993
  • A fuzzy controller designed by mini-max-gravity(MMG) method is essentially nonlinear with respect to the controller's input and output relationship, and stability analysis is thus needed to construct a stable control system. This paper deals with a design method of a position-type MMG fuzzy controller stable in a sense of Lyapunov when considered is a single-input-single-output linear, stable plant. We first introduce a method to construct a Laypunov function by using an eigen-value of A matrix of the linear, stable plant dynamics and then we derive an asymtotic stability condition in terms of scale factors for fuzzy state variables and controller gain. The stability condition is found reasonably practical through comparing the theoretical stability region with that obtained from simulations.

  • PDF

GLOBAL STABILITY OF VIRUS DYNAMICS MODEL WITH IMMUNE RESPONSE, CELLULAR INFECTION AND HOLLING TYPE-II

  • ELAIW, A.M.;GHALEB, SH.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.39-63
    • /
    • 2019
  • In this paper, we study the effect of Cytotoxic T Lymphocyte (CTL) and antibody immune responses on the virus dynamics with both virus-to-cell and cell-to-cell transmissions. The infection rate is given by Holling type-II. We first show that the model is biologically acceptable by showing that the solutions of the model are nonnegative and bounded. We find the equilibria of the model and investigate their global stability analysis. We derive five threshold parameters which fully determine the existence and stability of the five equilibria of the model. The global stability of all equilibria of the model is proven using Lyapunov method and applying LaSalle's invariance principle. To support our theoretical results we have performed some numerical simulations for the model. The results show the CTL and antibody immune response can control the disease progression.

Wavelet Network for Stable Direct Adaptive Control of Nonlinear Systems (비선형 시스템의 안정한 직접 적응 제어를 위한 웨이브렛 신경회로망)

  • Seo, Seung-Jin;Seo, Jae-Yong;Won, Kyoung-Jae;Yon, Jung-Heum;Jeon, Hong-Tae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.10
    • /
    • pp.51-57
    • /
    • 1999
  • In this paper, we deal with the problem of controlling an unknown nonlinear dynamical system, using wavelet network. Accurate control of the nonlinear systems depends critically on the accuracy and efficiency of the function approximator used to approximate the function. Thus, we use wavelet network which shows high capability of approximating the functions and includes the free-selection of basis functions for the control of the nonlinear system. We find the dilation and translation that are wavelet network parameters by analyzing the time-frequency characteristics of the controller's input to construct an initial adaptive wavelet network controller. Then, weights is adjusted by the adaptive law based on the Lyapunov stability theory. We apply this direct adaptive wavelet network controller to control the inverted pendulum system which is an nonlinear system.

  • PDF

Convergence Conditions of Iterative Learning Control in the Frequency Domain (주파수 영역에서 반복 학습 제어의 수렴 조건)

  • Doh, Tae-Yong;Moon, Jung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.175-179
    • /
    • 2003
  • Convergence condition determines performance of iterative learning control (ILC), for example, convergence speed, remaining error, etc. Hence, the performance can be elevated and a feasible set of learning controllers grows if a less conservative condition is obtained. In the frequency domain, the $H_{\infty}$ norm of the transfer function between consecutive errors has been currently used to test convergence of a learning system. However, even if the convergence condition based on the $H_{\infty}$ norm has a clear property about monotonic convergence, it has a few drawbacks, especially in MIMO plants. In this paper, the relation between the condition and the monotonicity of convergence is clarified and a modified convergence condition is found out using a frequency domain Lyapunov equation, which supersedes the conventional one in the frequency domain.

Smooth Formation Navigation of Multiple Mobile Robots for Avoiding Moving Obstacles

  • Chen Xin;Li Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.466-479
    • /
    • 2006
  • This paper addresses a formation navigation issue for a group of mobile robots passing through an environment with either static or moving obstacles meanwhile keeping a fixed formation shape. Based on Lyapunov function and graph theory, a NN formation control is proposed, which guarantees to maintain a formation if the formation pattern is $C^k,\;k\geq1$. In the process of navigation, the leader can generate a proper trajectory to lead formation and avoid moving obstacles according to the obtained information. An evolutionary computational technique using particle swarm optimization (PSO) is proposed for motion planning so that the formation is kept as $C^1$ function. The simulation results demonstrate that this algorithm is effective and the experimental studies validate the formation ability of the multiple mobile robots system.

Nonlinear system control using neural network (신경회로망을 이용한 비선형 시스템 제어)

  • 성홍석;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.32-39
    • /
    • 1996
  • In this paper, we describe the algorithm which controls an unknown nonlinear system with multilayer neural network. The multilayer neural netowrk can be used to approximate any continuous function to any desired degree of accuracy. With the former fact, we approximate unknown nonlinear function on the nonlinear system by using of multilayer neural netowrk. The weights on the hidden layer of multilayer neural network are updated by gradient method. The weight-update rule on the output layer is derived to satisfy lyapunov stability. Also, we obtain secondary controller form deriving step. The global control system consists of controller using feedback linearization method and secondary controller is order to satisfy layapunov stability. The proposed control algorithm is verified through computer simulation.

  • PDF

Design of a Sliding Mode Control with an Adaptation Law for the Upper Bound of the Uncertainties (불확실성의 경계치 적응기법을 가진 슬라이딩 모드 제어기 설계)

  • Yoo, Dong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.418-423
    • /
    • 2003
  • In order to describe the upper bound of the uncertainties without any information of the structure, we assume that the upper bound is represented as a Fredholm integral equation of the first kind, that is, an integral of the product of a predefined kernel with an unknown influence function. Based on the improved Lyapunov function, we propose an adaptation law that is capable of estimating the upper bound and we design a sliding mode control, which controls effectively for uncertain dynamic systems.

On the Design of Simple-structured Adaptive Fuzzy Logic Controllers

  • Park, Byung-Jae;Kwak, Seong-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.93-99
    • /
    • 2003
  • One of the methods to simplify the design process for a fuzzy logic controller (FLC) is to reduce the number of variables representing the rule antecedent. This in turn decreases the number of control rules, membership functions, and scaling factors. For this purpose, we designed a single-input FLC that uses a sole fuzzy input variable. However, it is still deficient in the capability of adapting some varying operating conditions although it provides a simple method for the design of FLC's. We here design two simple-structured adaptive fuzzy logic controllers (SAFLC's) using the concept of the single-input FLC. Linguistic fuzzy control rules are directly incorporated into the controller by a fuzzy basis function. Thus some parameters of the membership functions characterizing the linguistic terms of the fuzzy control rules can be adjusted by an adaptive law. In our controllers, center values of fuzzy sets are directly adjusted by an adaptive law. Two SAFLC's are designed. One of them uses a Hurwitz error dynamics and the other a switching function of the sliding mode control (SMC). We also prove that 1) their closed-loop systems are globally stable in the sense that all signals involved are bounded and 2) their tracking errors converge to zero asymptotically. We perform computer simulations using a nonlinear plant.

Robust Adaptive Fuzzy Backstepping Control for Trajectory Tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties (불확실성을 가지는 전기 구동 논홀로노믹 이동 로봇의 궤적 추종을 위한 강인 적응 퍼지 백스테핑 제어)

  • Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.902-911
    • /
    • 2012
  • This paper proposes a robust adaptive fuzzy backstepping control scheme for trajectory tracking of an electrically driven nonholonomic mobile robot with uncertainties and actuator dynamics. A complete model of an electrically driven nonholonomic mobile robot described in this work includes all models of the uncertain robot kinematics with a nonholonomic constraint, the uncertain robot body dynamics with uncertain frictions and unmodeled disturbances, and the uncertain actuator dynamics with disturbances. The proposed control scheme uses the backstepping control approach through a kinematic controller and a robust adaptive fuzzy velocity tracking controller. The presented control scheme has a voltage control input with an auxiliary current control input rather than a torque control input. It has two FBFNs(Fuzzy Basis Function Networks) to approximate two unknown nonlinear robot dynamic functions and a robust adaptive control input with the proposed adaptive laws to overcome the uncertainties such as parameter uncertainties and external disturbances. The proposed control scheme does not a priori require the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. It can also alleviate the chattering of the control input. Using the Lyapunov stability theory, the stability of the closed-loop robot control system is guaranteed. Simulation results show the validity and robustness of the proposed control scheme.

A Study on an Adaptive Robust Fuzzy Controller with GAs for Path Tracking of a Wheeled Mobile Robot

  • Nguyen, Hoang-Giap;Kim, Won-Ho;Shin, Jin-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.12-18
    • /
    • 2010
  • This paper proposes an adaptive robust fuzzy control scheme for path tracking of a wheeled mobile robot with uncertainties. The robot dynamics including the actuator dynamics is considered in this work. The presented controller is composed of a fuzzy basis function network (FBFN) to approximate an unknown nonlinear function of the robot complete dynamics, an adaptive robust input to overcome the uncertainties, and a stabilizing control input. Genetic algorithms are employed to optimize the fuzzy rules of FBFN. The stability and the convergence of the tracking errors are guaranteed using the Lyapunov stability theory. When the controller is designed, the different parameters for two actuator models in the dynamic equation are taken into account. The proposed control scheme does not require the accurate parameter values for the actuator parameters as well as the robot parameters. The validity and robustness of the proposed control scheme are demonstrated through computer simulations.